Helizität und Spin
Zur Navigation springen
Zur Suche springen
Quantenmechanikvorlesung von Prof. Dr. T. Brandes
| Der Artikel Helizität und Spin basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 8) der Quantenmechanikvorlesung von Prof. Dr. T. Brandes. |
|}}
Erinnerung Produkte in Dirac Spinoren (1.72).
Definiere:
als Einheitsvektor in -Richtung in Polarkoordinaten bezüglich der z-Achse. Dann gilt
Eigenvektoren von bestimmen! Die Eigenwerte sind . Die Spinoren (1.72) als Eigenvektoren des Helizitätsoperators (4x4 Matrix)
wählen: Hierzu (1.72) damit haben wir die Basis
- Der HamiltonoperatorHamiltonoperator des freien Dirac-Teilchens, (1.31), kommutiert mit dem Helizitätsoperator (1.75), (AUFGABE) aber nicht mit dem Spin-Operator . Deshalb kann man die Lösungen der freien Dirac-Gleichungen als Eigenvektoren von zählen.