Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2711.157 on revision:2711

* Page found: Formaler Aufbau der Quantenmechanik (eq math.2711.157)

(force rerendering)

Occurrences on the following pages:

Hash: 340865ee6fb1d01f445c0fb1743a00a5

TeX (original user input):

\begin{align}
& {{\chi }_{2}}\left( t \right)={{c}_{+}}{{e}^{\mathfrak{i} \left( \frac{\omega }{2}+\frac{{{\Omega }_{R}}}{2} \right)t}}+{{c}_{-}}{{e}^{\mathfrak{i} \left( \frac{\omega }{2}-\,\frac{{{\Omega }_{R}}}{2} \right)t}}\quad {{c}_{\pm }}\in \mathbb{C} \\
& ={{e}^{\mathfrak{i} \omega t}}\left\{ \alpha \cos \frac{{{\Omega }_{R}}}{2}+\beta \sin \frac{{{\Omega }_{R}}}{2} \right\}\quad \alpha ,\beta \in \mathbb{C}
\end{align}

TeX (checked):

{\begin{aligned}&{{\chi }_{2}}\left(t\right)={{c}_{+}}{{e}^{{\mathfrak {i}}\left({\frac {\omega }{2}}+{\frac {{\Omega }_{R}}{2}}\right)t}}+{{c}_{-}}{{e}^{{\mathfrak {i}}\left({\frac {\omega }{2}}-\,{\frac {{\Omega }_{R}}{2}}\right)t}}\quad {{c}_{\pm }}\in \mathbb {C} \\&={{e}^{{\mathfrak {i}}\omega t}}\left\{\alpha \cos {\frac {{\Omega }_{R}}{2}}+\beta \sin {\frac {{\Omega }_{R}}{2}}\right\}\quad \alpha ,\beta \in \mathbb {C} \end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.524 KB / 570 B) :

χ2(t)=c+ei(ω2+ΩR2)t+cei(ω2ΩR2)tc±=eiωt{αcosΩR2+βsinΩR2}α,β
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A9;</mi><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>t</mi></mrow></mrow></msup><mo>+</mo><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>&#x2212;</mo><mspace width="0.167em"></mspace><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A9;</mi><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>t</mi></mrow></mrow></msup><mspace width="1em"></mspace><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mo>&#x2208;</mo><mrow data-mjx-texclass="ORD"><mi mathvariant="double-struck">&#x2102;</mi></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>&#x03C9;</mi><mi>t</mi></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mi>&#x03B1;</mi><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A9;</mi><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>+</mo><mi>&#x03B2;</mi><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A9;</mi><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mspace width="1em"></mspace><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B2;</mi><mo>&#x2208;</mo><mrow data-mjx-texclass="ORD"><mi mathvariant="double-struck">&#x2102;</mi></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Formaler Aufbau der Quantenmechanik page

Identifiers

  • χ2
  • t
  • c+
  • e
  • i
  • ω
  • ΩR
  • t
  • c
  • e
  • i
  • ω
  • ΩR
  • t
  • c
  • e
  • i
  • ω
  • t
  • α
  • ΩR
  • β
  • ΩR
  • α
  • β

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results