Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2711.154 on revision:2711

* Page found: Formaler Aufbau der Quantenmechanik (eq math.2711.154)

(force rerendering)

Occurrences on the following pages:

Hash: 2757122693d1df44123c2c7fb250f2b1

TeX (original user input):

0=\left| \begin{matrix}
z+\frac{\omega }{2}-{{B}_{0}} & -{{B}_{1}}  \\
-{{B}_{1}} & z-\frac{\omega }{2}+{{B}_{0}}  \\
\end{matrix} \right|={{z}^{2}}-{{\left( {{B}_{0}}-\frac{\omega }{2} \right)}^{2}}-B_{1}^{2}\Rightarrow {{z}_{\pm }}=\pm \sqrt{{{\left( {{B}_{0}}-\frac{\omega }{2} \right)}^{2}}+B_{1}^{2}}=\pm \frac{1}{2}{{\Omega }_{R}}

TeX (checked):

0=\left|{\begin{matrix}z+{\frac {\omega }{2}}-{{B}_{0}}&-{{B}_{1}}\\-{{B}_{1}}&z-{\frac {\omega }{2}}+{{B}_{0}}\\\end{matrix}}\right|={{z}^{2}}-{{\left({{B}_{0}}-{\frac {\omega }{2}}\right)}^{2}}-B_{1}^{2}\Rightarrow {{z}_{\pm }}=\pm {\sqrt {{{\left({{B}_{0}}-{\frac {\omega }{2}}\right)}^{2}}+B_{1}^{2}}}=\pm {\frac {1}{2}}{{\Omega }_{R}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.778 KB / 464 B) :

0=|z+ω2B0B1B1zω2+B0|=z2(B0ω2)2B12z±=±(B0ω2)2+B12=±12ΩR
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mn>0</mn><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>z</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd><mtd><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><mi>z</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>+</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><msup><mi>z</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msubsup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msubsup><mo>&#x21D2;</mo><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mo>=</mo><mo>&#x00B1;</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msubsup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msubsup></mrow></msqrt></mrow><mo>=</mo><mo>&#x00B1;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msub><mi mathvariant="normal">&#x03A9;</mi><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></msub></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Formaler Aufbau der Quantenmechanik page

Identifiers

  • z
  • ω
  • B0
  • B1
  • B1
  • z
  • ω
  • B0
  • z
  • B0
  • ω
  • B
  • z
  • B0
  • ω
  • B
  • ΩR

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results