Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2711.153 on revision:2711

* Page found: Formaler Aufbau der Quantenmechanik (eq math.2711.153)

(force rerendering)

Occurrences on the following pages:

Hash: 2ed3365700e6ef5893bb14dab72345ed

TeX (original user input):

\begin{align}
& {{\chi }_{1}}={{c}_{1}}{{e}^{\mathfrak{i} zt-\mathfrak{i} \frac{\omega }{2}t}}\quad \quad \left( z+\frac{\omega }{2} \right){{c}_{1}}={{B}_{0}}{{c}_{1}}+{{B}_{1}}{{c}_{2}} \\
& {{\chi }_{2}}={{c}_{2}}{{e}^{\mathfrak{i} zt+\mathfrak{i} \frac{\omega }{2}t}}\quad \quad \left( z-\frac{\omega }{2} \right){{c}_{1}}={{B}_{1}}{{c}_{1}}-{{B}_{0}}{{c}_{2}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\chi }_{1}}={{c}_{1}}{{e}^{{\mathfrak {i}}zt-{\mathfrak {i}}{\frac {\omega }{2}}t}}\quad \quad \left(z+{\frac {\omega }{2}}\right){{c}_{1}}={{B}_{0}}{{c}_{1}}+{{B}_{1}}{{c}_{2}}\\&{{\chi }_{2}}={{c}_{2}}{{e}^{{\mathfrak {i}}zt+{\mathfrak {i}}{\frac {\omega }{2}}t}}\quad \quad \left(z-{\frac {\omega }{2}}\right){{c}_{1}}={{B}_{1}}{{c}_{1}}-{{B}_{0}}{{c}_{2}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.175 KB / 477 B) :

χ1=c1eiztiω2t(z+ω2)c1=B0c1+B1c2χ2=c2eizt+iω2t(zω2)c1=B1c1B0c2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>z</mi><mi>t</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>t</mi></mrow></mrow></msup><mspace width="1em"></mspace><mspace width="1em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>z</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>z</mi><mi>t</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>t</mi></mrow></mrow></msup><mspace width="1em"></mspace><mspace width="1em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>z</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Formaler Aufbau der Quantenmechanik page

Identifiers

  • χ1
  • c1
  • e
  • i
  • z
  • t
  • i
  • ω
  • t
  • z
  • ω
  • c1
  • B0
  • c1
  • B1
  • c2
  • χ2
  • c2
  • e
  • i
  • z
  • t
  • i
  • ω
  • t
  • z
  • ω
  • c1
  • B1
  • c1
  • B0
  • c2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results