Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2711.130 on revision:2711

* Page found: Formaler Aufbau der Quantenmechanik (eq math.2711.130)

(force rerendering)

Occurrences on the following pages:

Hash: 0e30d35993f6cd61bf5b281538ec7c18

TeX (original user input):

\hat{A}=\hat{A}\left( t \right)\Rightarrow {{\left\langle {\hat{A}} \right\rangle }_{t}}=\left\langle \Psi \left( t \right)\,\underbrace{\left| \hat{A}\left( t \right)\, \right|}_{\text{Intrinsisch}}\,\Psi \left( t \right) \right\rangle =\left\langle \Psi \left( 0 \right)\,\underbrace{\left| {{e}^{\mathfrak{i} \hat{H}t}}\hat{A}{{e}^{-\mathfrak{i} \hat{H}t}} \right|}_{{{{\hat{A}}}_{H}}\left( t \right)}\,\Psi \left( 0 \right) \right\rangle

TeX (checked):

{\hat {A}}={\hat {A}}\left(t\right)\Rightarrow {{\left\langle {\hat {A}}\right\rangle }_{t}}=\left\langle \Psi \left(t\right)\,\underbrace {\left|{\hat {A}}\left(t\right)\,\right|} _{\text{Intrinsisch}}\,\Psi \left(t\right)\right\rangle =\left\langle \Psi \left(0\right)\,\underbrace {\left|{{e}^{{\mathfrak {i}}{\hat {H}}t}}{\hat {A}}{{e}^{-{\mathfrak {i}}{\hat {H}}t}}\right|} _{{{\hat {A}}_{H}}\left(t\right)}\,\Psi \left(0\right)\right\rangle

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.662 KB / 477 B) :

A^=A^(t)A^t=Ψ(t)|A^(t)|IntrinsischΨ(t)=Ψ(0)|eiH^tA^eiH^t|A^H(t)Ψ(0)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D2;</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="0.167em"></mspace><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="0.167em"></mspace><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>Intrinsisch</mtext></mrow></mrow></munder><mspace width="0.167em"></mspace><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="0.167em"></mspace><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi>t</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi>t</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>H</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></munder><mspace width="0.167em"></mspace><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Formaler Aufbau der Quantenmechanik page

Identifiers

  • A^
  • A^
  • t
  • A^t
  • Ψ
  • t
  • A^
  • t
  • Ψ
  • t
  • Ψ
  • e
  • i
  • H^
  • t
  • A^
  • e
  • i
  • H^
  • t
  • A^H
  • t
  • Ψ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results