Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2697.11 on revision:2697

* Page found: Helizität und Spin (eq math.2697.11)

(force rerendering)

Occurrences on the following pages:

Hash: 326b1d1ede3e24903701fe582b59f6a4

TeX (original user input):

{{\phi }_{+}}^{\left( \sigma  \right)}\left( {\underline{k}} \right):=N\left( \begin{align}
& \left( E+m \right)\left| \sigma ,\hat{k} \right\rangle  \\
& \left( \underline{k}.\underline{\sigma } \right)\left| \sigma ,\hat{k} \right\rangle  \\
\end{align} \right)\quad {{\phi }_{-}}^{\left( \sigma  \right)}\left( {\underline{k}} \right):=N\left( \begin{align}
& \left( \underline{k}.\underline{\sigma } \right)\left| \sigma ,\hat{k} \right\rangle  \\
& \left( E+m \right)\left| \sigma ,\hat{k} \right\rangle  \\
\end{align} \right)

TeX (checked):

{{\phi }_{+}}^{\left(\sigma \right)}\left({\underline {k}}\right):=N\left({\begin{aligned}&\left(E+m\right)\left|\sigma ,{\hat {k}}\right\rangle \\&\left({\underline {k}}.{\underline {\sigma }}\right)\left|\sigma ,{\hat {k}}\right\rangle \\\end{aligned}}\right)\quad {{\phi }_{-}}^{\left(\sigma \right)}\left({\underline {k}}\right):=N\left({\begin{aligned}&\left({\underline {k}}.{\underline {\sigma }}\right)\left|\sigma ,{\hat {k}}\right\rangle \\&\left(E+m\right)\left|\sigma ,{\hat {k}}\right\rangle \\\end{aligned}}\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.753 KB / 456 B) :

ϕ+(σ)(k_):=N((E+m)|σ,k^(k_.σ_)|σ,k^)ϕ(σ)(k_):=N((k_.σ_)|σ,k^(E+m)|σ,k^)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C3;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>:</mi><mo>=</mo><mi>N</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C3;</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C3;</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C3;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>:</mi><mo>=</mo><mi>N</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C3;</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C3;</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Helizität und Spin page

Identifiers

  • ϕ+
  • σ
  • k_
  • N
  • E
  • m
  • σ
  • k^
  • k_
  • σ_
  • σ
  • k^
  • ϕ
  • σ
  • k_
  • N
  • k_
  • σ_
  • σ
  • k^
  • E
  • m
  • σ
  • k^

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results