Mikroskopisches Modell der Polarisierbarkeit: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|5|5}}</noinclude> Ziel: Berechnung der Materialkonstanten <u>'''5.5 Mikroskopisches Modell der Polarisierbarkeit'''</u…“
 
*>SchuBot
Einrückungen Mathematik
Zeile 6: Zeile 6:


Ziel: Berechnung der Materialkonstanten
Ziel: Berechnung der Materialkonstanten
<math>{{\chi }_{e}}</math>
:<math>{{\chi }_{e}}</math>
aus einfachen mikroskopischen Modellen
aus einfachen mikroskopischen Modellen
Methode:  Berechne die induzierte mittlere elektrische Dipoldichte
Methode:  Berechne die induzierte mittlere elektrische Dipoldichte
<math>\bar{P}</math>
:<math>\bar{P}</math>
für ein gegebenes Feld
für ein gegebenes Feld
<math>\bar{E}</math>
:<math>\bar{E}</math>
.
.


Zeile 19: Zeile 19:


homogen geladene Kugel mit Radius R und Elektronenladung
homogen geladene Kugel mit Radius R und Elektronenladung
<math>{{Q}_{e}}=-Ze<0</math>
:<math>{{Q}_{e}}=-Ze<0</math>


Außerdem ein punktförmiger Kern mit
Außerdem ein punktförmiger Kern mit
<math>{{Q}_{k}}=+Ze>0</math>
:<math>{{Q}_{k}}=+Ze>0</math>
am Ort
am Ort
<math>{{\bar{r}}_{k}}</math>
:<math>{{\bar{r}}_{k}}</math>


'''Merke:'''
'''Merke:'''
Zeile 31: Zeile 31:


Ziel: Berechnung des elektrischen Feldes
Ziel: Berechnung des elektrischen Feldes
<math>{{\bar{E}}_{el.}}\left( {\bar{r}} \right)</math>
:<math>{{\bar{E}}_{el.}}\left( {\bar{r}} \right)</math>
der Elektronen nach außen:
der Elektronen nach außen:


Zeile 37: Zeile 37:




<math>\int_{V}^{{}}{{}}{{d}^{3}}r\nabla \cdot \bar{D}\left( \bar{r},t \right)=\int_{V}^{{}}{{}}{{d}^{3}}r\rho \left( \bar{r},t \right)=Q=\oint\limits_{\partial V}{{}}d\bar{f}\cdot \bar{D}\left( \bar{r},t \right)</math>
:<math>\int_{V}^{{}}{{}}{{d}^{3}}r\nabla \cdot \bar{D}\left( \bar{r},t \right)=\int_{V}^{{}}{{}}{{d}^{3}}r\rho \left( \bar{r},t \right)=Q=\oint\limits_{\partial V}{{}}d\bar{f}\cdot \bar{D}\left( \bar{r},t \right)</math>


Wir müssen aber zurückkehren zu den mikroskopischen Maxwellgleichungen
Wir müssen aber zurückkehren zu den mikroskopischen Maxwellgleichungen
Zeile 46: Zeile 46:
Auswertung liefert
Auswertung liefert


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{0}}\oint\limits_{\partial V(r\acute{\ })}{{}}d\bar{f}\cdot \bar{E}\left( \bar{r},t \right)=\int_{V(r\acute{\ })}^{{}}{{}}\frac{Q}{\frac{4}{3}\pi {{R}^{3}}}=\frac{r{{\acute{\ }}^{3}}}{{{R}^{3}}}Q \\
& {{\varepsilon }_{0}}\oint\limits_{\partial V(r\acute{\ })}{{}}d\bar{f}\cdot \bar{E}\left( \bar{r},t \right)=\int_{V(r\acute{\ })}^{{}}{{}}\frac{Q}{\frac{4}{3}\pi {{R}^{3}}}=\frac{r{{\acute{\ }}^{3}}}{{{R}^{3}}}Q \\
& \Rightarrow 4r{{\acute{\ }}^{2}}\pi {{\varepsilon }_{0}}\left| \bar{E}\left( \bar{r},t \right) \right|=\frac{r{{\acute{\ }}^{3}}}{{{R}^{3}}}Q \\
& \Rightarrow 4r{{\acute{\ }}^{2}}\pi {{\varepsilon }_{0}}\left| \bar{E}\left( \bar{r},t \right) \right|=\frac{r{{\acute{\ }}^{3}}}{{{R}^{3}}}Q \\
Zeile 54: Zeile 54:
Natürlich nur für
Natürlich nur für


<math>r\acute{\ }\le R</math>
:<math>r\acute{\ }\le R</math>


setzt man
setzt man
<math>\bar{r}\acute{\ }=\bar{r}-{{\bar{r}}_{e}}</math>
:<math>\bar{r}\acute{\ }=\bar{r}-{{\bar{r}}_{e}}</math>
, wobei
, wobei
<math>{{\bar{r}}_{e}}</math>
:<math>{{\bar{r}}_{e}}</math>
das Zentrum der elektrischen Ladung angibt,
das Zentrum der elektrischen Ladung angibt,


so gewinnt man das rotationssymmetrische Ergebnis
so gewinnt man das rotationssymmetrische Ergebnis


<math>\bar{E}\left( \bar{r},t \right)=\frac{\bar{r}-{{{\bar{r}}}_{e}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}{{Q}_{e}}</math>
:<math>\bar{E}\left( \bar{r},t \right)=\frac{\bar{r}-{{{\bar{r}}}_{e}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}{{Q}_{e}}</math>


und die Kraft auf den Kern folgt gemäß:
und die Kraft auf den Kern folgt gemäß:


<math>{{\bar{F}}_{K}}={{Q}_{K}}\bar{E}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=\frac{{{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}{{Q}_{e}}{{Q}_{k}}=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)</math>
:<math>{{\bar{F}}_{K}}={{Q}_{K}}\bar{E}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=\frac{{{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}{{Q}_{e}}{{Q}_{k}}=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)</math>


wegen actio = reactio folgt dann für die Kraft auf die Elektronen:
wegen actio = reactio folgt dann für die Kraft auf die Elektronen:


<math>{{\bar{F}}_{e}}=-{{\bar{F}}_{K}}</math>
:<math>{{\bar{F}}_{e}}=-{{\bar{F}}_{K}}</math>


Aufstellen der Bewegungsgleichungen ( inklusive einem äußeren Feld
Aufstellen der Bewegungsgleichungen ( inklusive einem äußeren Feld
<math>{{\bar{E}}_{a}}</math>
:<math>{{\bar{E}}_{a}}</math>
):
):


<math>\begin{align}
:<math>\begin{align}
&  {{m}_{K}}{{{\ddot{\bar{r}}}}_{k}}={{{\bar{F}}}_{K}}+{{Q}_{K}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+{{Q}_{K}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+Ze{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right) \\
&  {{m}_{K}}{{{\ddot{\bar{r}}}}_{k}}={{{\bar{F}}}_{K}}+{{Q}_{K}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+{{Q}_{K}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+Ze{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right) \\
& Z{{m}_{e}}{{{\ddot{\bar{r}}}}_{e}}=-{{{\bar{F}}}_{K}}+{{Q}_{e}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+{{Q}_{e}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)-Ze{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right) \\
& Z{{m}_{e}}{{{\ddot{\bar{r}}}}_{e}}=-{{{\bar{F}}}_{K}}+{{Q}_{e}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+{{Q}_{e}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)=\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)-Ze{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right) \\
Zeile 85: Zeile 85:
Also folgt für die Relativbewegung:
Also folgt für die Relativbewegung:


<math>\bar{r}={{\bar{r}}_{k}}-{{\bar{r}}_{e}}</math>
:<math>\bar{r}={{\bar{r}}_{k}}-{{\bar{r}}_{e}}</math>


als relativer Abstand
als relativer Abstand


<math>\begin{align}
:<math>\begin{align}
&  \ddot{\bar{r}}={{{\ddot{\bar{r}}}}_{k}}-{{{\ddot{\bar{r}}}}_{e}}=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}{{m}_{K}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+\frac{Ze}{{{m}_{K}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)-\frac{Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}{{m}_{e}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+\frac{e}{{{m}_{e}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right) \\
&  \ddot{\bar{r}}={{{\ddot{\bar{r}}}}_{k}}-{{{\ddot{\bar{r}}}}_{e}}=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}{{m}_{K}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+\frac{Ze}{{{m}_{K}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)-\frac{Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}{{m}_{e}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+\frac{e}{{{m}_{e}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right) \\
& =-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( \frac{1}{{{m}_{K}}}+\frac{1}{Z{{m}_{e}}} \right)\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+Ze\left( \frac{1}{{{m}_{K}}}+\frac{1}{Z{{m}_{e}}} \right){{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right) \\
& =-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( \frac{1}{{{m}_{K}}}+\frac{1}{Z{{m}_{e}}} \right)\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+Ze\left( \frac{1}{{{m}_{K}}}+\frac{1}{Z{{m}_{e}}} \right){{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right) \\
Zeile 103: Zeile 103:
Jedenfalls im stationären Zustand gilt:
Jedenfalls im stationären Zustand gilt:


<math>\bar{r}=\frac{e}{{{\omega }_{0}}^{2}{{m}_{e}}}{{\bar{E}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)</math>
:<math>\bar{r}=\frac{e}{{{\omega }_{0}}^{2}{{m}_{e}}}{{\bar{E}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)</math>


( Dynamik mit Dämpfung)
( Dynamik mit Dämpfung)


<math>\Rightarrow {{\chi }_{e}}\left( \omega  \right)</math>
:<math>\Rightarrow {{\chi }_{e}}\left( \omega  \right)</math>


Als Ergebnis gewinnen wir ein statisch mikroskopisch elektrisches Dipolmoment, welches sich über p=qd bereits hinschreiben läßt und welches auch übereinstimmt mit Gleichungen von oben zur exakten Berechnung des elektrischen Dipolmoments:
Als Ergebnis gewinnen wir ein statisch mikroskopisch elektrisches Dipolmoment, welches sich über p=qd bereits hinschreiben läßt und welches auch übereinstimmt mit Gleichungen von oben zur exakten Berechnung des elektrischen Dipolmoments:


<math>\begin{align}
:<math>\begin{align}
& \bar{p}=Ze\bar{r}=\frac{Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{m}_{e}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)={{\varepsilon }_{0}}\alpha {{{\bar{E}}}_{a}} \\
& \bar{p}=Ze\bar{r}=\frac{Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{m}_{e}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)={{\varepsilon }_{0}}\alpha {{{\bar{E}}}_{a}} \\
& \alpha :=\frac{Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{\varepsilon }_{0}}{{m}_{e}}} \\
& \alpha :=\frac{Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{\varepsilon }_{0}}{{m}_{e}}} \\
Zeile 121: Zeile 121:
Entsprechend:
Entsprechend:


<math>\begin{align}
:<math>\begin{align}
& \bar{p}=\int_{V}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\rho }_{e}}(r\acute{\ })\bar{r}\acute{\ }+Ze\int_{V}^{{}}{{}}{{d}^{3}}r\acute{\ }\delta (\bar{r}-\bar{r}\acute{\ }) \\
& \bar{p}=\int_{V}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\rho }_{e}}(r\acute{\ })\bar{r}\acute{\ }+Ze\int_{V}^{{}}{{}}{{d}^{3}}r\acute{\ }\delta (\bar{r}-\bar{r}\acute{\ }) \\
& Ze\int_{V}^{{}}{{}}{{d}^{3}}r\acute{\ }\delta (\bar{r}-\bar{r}\acute{\ })=Ze\bar{r} \\
& Ze\int_{V}^{{}}{{}}{{d}^{3}}r\acute{\ }\delta (\bar{r}-\bar{r}\acute{\ })=Ze\bar{r} \\
Zeile 130: Zeile 130:
wegen Symmetrie
wegen Symmetrie


<math>\bar{p}=Ze\bar{r}</math>
:<math>\bar{p}=Ze\bar{r}</math>


makroskopisch gemittelte Energiedichte:
makroskopisch gemittelte Energiedichte:


<math>\bar{P}=n\bar{p}={{\varepsilon }_{0}}n\alpha {{\bar{E}}_{a}}</math>
:<math>\bar{P}=n\bar{p}={{\varepsilon }_{0}}n\alpha {{\bar{E}}_{a}}</math>


mit der mittleren Atomdichte n
mit der mittleren Atomdichte n
Zeile 149: Zeile 149:
Ansatz: homogen geladene Kugel:
Ansatz: homogen geladene Kugel:


<math>{{\bar{E}}_{0}}\left( {\bar{r}} \right)=\frac{Q}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
:<math>{{\bar{E}}_{0}}\left( {\bar{r}} \right)=\frac{Q}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
\frac{{\bar{r}}}{{{a}^{3}}}r\le a  \\
\frac{{\bar{r}}}{{{a}^{3}}}r\le a  \\
\frac{{\bar{r}}}{{{r}^{3}}}r\ge a  \\
\frac{{\bar{r}}}{{{r}^{3}}}r\ge a  \\
Zeile 157: Zeile 157:




<math>{{\Phi }_{0}}\left( {\bar{r}} \right)=\frac{Q}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
:<math>{{\Phi }_{0}}\left( {\bar{r}} \right)=\frac{Q}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
c-\frac{{{{\bar{r}}}^{2}}}{2{{a}^{3}}}r\le a  \\
c-\frac{{{{\bar{r}}}^{2}}}{2{{a}^{3}}}r\le a  \\
\frac{1}{r}r\ge a  \\
\frac{1}{r}r\ge a  \\
Zeile 164: Zeile 164:
Bestimmung der Integrationskonstanten:
Bestimmung der Integrationskonstanten:


<math>\begin{matrix}
:<math>\begin{matrix}
\lim  \\
\lim  \\
\varepsilon ->0  \\
\varepsilon ->0  \\
Zeile 178: Zeile 178:
Bilde:
Bilde:


<math>\begin{align}
:<math>\begin{align}
& {{\Phi }_{0}}\left( {\bar{r}} \right)={{\Phi }_{0}}\left( \bar{r}-\frac{1}{2}{{{\bar{r}}}_{0}} \right)-{{\Phi }_{0}}\left( \bar{r}+\frac{1}{2}{{{\bar{r}}}_{0}} \right) \\
& {{\Phi }_{0}}\left( {\bar{r}} \right)={{\Phi }_{0}}\left( \bar{r}-\frac{1}{2}{{{\bar{r}}}_{0}} \right)-{{\Phi }_{0}}\left( \bar{r}+\frac{1}{2}{{{\bar{r}}}_{0}} \right) \\
& \approx -{{{\bar{r}}}_{0}}\nabla {{\Phi }_{0}}\left( {\bar{r}} \right) \\
& \approx -{{{\bar{r}}}_{0}}\nabla {{\Phi }_{0}}\left( {\bar{r}} \right) \\
Zeile 197: Zeile 197:
Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation ( eigentlich Dipoldichte) umschreiben:
Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation ( eigentlich Dipoldichte) umschreiben:


<math>\begin{align}
:<math>\begin{align}
& \bar{P}=\frac{{\bar{p}}}{\frac{4}{3}{{a}^{3}}\pi } \\
& \bar{P}=\frac{{\bar{p}}}{\frac{4}{3}{{a}^{3}}\pi } \\
& \Rightarrow {{\Phi }_{0}}\left( {\bar{r}} \right)\approx {{{\bar{r}}}_{0}}{{{\bar{E}}}_{0}}=\frac{Q}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
& \Rightarrow {{\Phi }_{0}}\left( {\bar{r}} \right)\approx {{{\bar{r}}}_{0}}{{{\bar{E}}}_{0}}=\frac{Q}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
Zeile 210: Zeile 210:
Wir gewinnen innerhalb der Kugel homogene Polarisation und außerhalb ein Dipolpotenzial.
Wir gewinnen innerhalb der Kugel homogene Polarisation und außerhalb ein Dipolpotenzial.


<math>{{\bar{E}}_{Kugel}}=-\nabla \Phi =-\frac{1}{{{\varepsilon }_{0}}}\frac{{\bar{P}}}{3}r\le a</math>
:<math>{{\bar{E}}_{Kugel}}=-\nabla \Phi =-\frac{1}{{{\varepsilon }_{0}}}\frac{{\bar{P}}}{3}r\le a</math>


für das elektrische Feld im Inneren der Kugel ( homogen polarisiert).
für das elektrische Feld im Inneren der Kugel ( homogen polarisiert).
Zeile 224: Zeile 224:
Das Lokalfeld  im INNEREN des KugelHOHLRAUMS, welcher aus dem Volumen herausgeschnitten wurde:
Das Lokalfeld  im INNEREN des KugelHOHLRAUMS, welcher aus dem Volumen herausgeschnitten wurde:


<math>{{\bar{E}}_{a}}\left( {\bar{r}} \right)=\bar{E}-{{\bar{E}}_{KUgel}}</math>
:<math>{{\bar{E}}_{a}}\left( {\bar{r}} \right)=\bar{E}-{{\bar{E}}_{KUgel}}</math>


<math>\begin{align}
:<math>\begin{align}
& {{{\bar{E}}}_{a}}\left( {\bar{r}} \right):Lokalfeld \\
& {{{\bar{E}}}_{a}}\left( {\bar{r}} \right):Lokalfeld \\
& \bar{E}:makroskopisch \\
& \bar{E}:makroskopisch \\
Zeile 236: Zeile 236:
weil
weil


<math>{{\bar{E}}_{a}}+{{\bar{E}}_{Kugel}}=\bar{E}</math>
:<math>{{\bar{E}}_{a}}+{{\bar{E}}_{Kugel}}=\bar{E}</math>
sein muss
sein muss


Zeile 243: Zeile 243:
'''Zusammenhang zwischen P und makroskopischem Feld E:'''
'''Zusammenhang zwischen P und makroskopischem Feld E:'''


<math>\begin{align}
:<math>\begin{align}
& \bar{P}={{\varepsilon }_{0}}n\alpha {{{\bar{E}}}_{a}}={{\varepsilon }_{0}}n\alpha \left( \bar{E}+\frac{1}{3{{\varepsilon }_{0}}}\bar{P} \right) \\
& \bar{P}={{\varepsilon }_{0}}n\alpha {{{\bar{E}}}_{a}}={{\varepsilon }_{0}}n\alpha \left( \bar{E}+\frac{1}{3{{\varepsilon }_{0}}}\bar{P} \right) \\
& \bar{P}={{\varepsilon }_{0}}{{\chi }_{e}}\bar{E} \\
& \bar{P}={{\varepsilon }_{0}}{{\chi }_{e}}\bar{E} \\

Version vom 12. September 2010, 17:56 Uhr




Ziel: Berechnung der Materialkonstanten

5.5 Mikroskopisches Modell der Polarisierbarkeit

Ziel: Berechnung der Materialkonstanten

aus einfachen mikroskopischen Modellen Methode: Berechne die induzierte mittlere elektrische Dipoldichte

für ein gegebenes Feld

.

Nebenbemerkung: Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation

Klassisches Atommodell:

homogen geladene Kugel mit Radius R und Elektronenladung

Außerdem ein punktförmiger Kern mit

am Ort

Merke:

Auch diese Berechnungen geschehen, wie im NOTFALL grundsätzlich zu empfehlen, durch Lösen integraler Darstellungen der Maxwellgleichungen

Ziel: Berechnung des elektrischen Feldes

der Elektronen nach außen:

Gauß- Gesetz


Wir müssen aber zurückkehren zu den mikroskopischen Maxwellgleichungen


Wichtig ! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber ! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig , aber hier homogen verteilt !-> einfache Integration.

Auswertung liefert

Natürlich nur für

setzt man

, wobei

das Zentrum der elektrischen Ladung angibt,

so gewinnt man das rotationssymmetrische Ergebnis

und die Kraft auf den Kern folgt gemäß:

wegen actio = reactio folgt dann für die Kraft auf die Elektronen:

Aufstellen der Bewegungsgleichungen ( inklusive einem äußeren Feld

):

Also folgt für die Relativbewegung:

als relativer Abstand

Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial ! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können !

Jedenfalls im stationären Zustand gilt:

( Dynamik mit Dämpfung)

Als Ergebnis gewinnen wir ein statisch mikroskopisch elektrisches Dipolmoment, welches sich über p=qd bereits hinschreiben läßt und welches auch übereinstimmt mit Gleichungen von oben zur exakten Berechnung des elektrischen Dipolmoments:

Die Polarisierbarkeit des Atoms, ein mikroskopischer Parameter. Entsprechend:

wegen Symmetrie

makroskopisch gemittelte Energiedichte:

mit der mittleren Atomdichte n

Selbstkonsistente Berechnung des Lokalfeldes Ea:

Wichtig: Berücksichtigung der Felder, die durch andere elektrische Dipole erzeugt werden:

Gedankenexperiment


Feld einer homogenen polarisierten Kugel:

Ansatz: homogen geladene Kugel:

Also:


Bestimmung der Integrationskonstanten:

die homogen polarisierte Kugel

Bei der homogen polarisierten Kugel kann man 2 entgegegengesetzt homogen geladene Kugeln mit Abstand ro annehmen.

Dann: ro -> 0


Bilde:

Das Dipolmoment der herausgeschnittenen Kugel.

Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet. Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation ( eigentlich Dipoldichte) umschreiben:

Wir gewinnen innerhalb der Kugel homogene Polarisation und außerhalb ein Dipolpotenzial.

für das elektrische Feld im Inneren der Kugel ( homogen polarisiert).

Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:


das äußere Feld wird erzeugt durch Atome, die sich außerhalb der Hohlkugel befinden. Das innere Feld durch Atome im Inneren der Hohlkugel. Gezeichnet: Lokalfeld einer polarisierten dielektrischen Kugel im homogenen elektrischen Feld


Das Lokalfeld im INNEREN des KugelHOHLRAUMS, welcher aus dem Volumen herausgeschnitten wurde:

Letztes wurde von Lorentz eingeführt als "Korrekturfeld"

weil

sein muss

Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel ( wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld !

Zusammenhang zwischen P und makroskopischem Feld E:

Formel von Clausius - Masotti für polarisierte Kugel