Mikroskopisches Modell der Polarisierbarkeit: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
K Pfeile einfügen, replaced: -> → → (2)
*>SchuBot
K Interpunktion, replaced: ! → ! (7), ( → ( (5)
 
Zeile 11: Zeile 11:
:<math>\bar{P}</math>
:<math>\bar{P}</math>
für ein gegebenes Feld
für ein gegebenes Feld
:<math>\bar{E}</math>
:<math>\bar{E}</math>.
.
 


'''Nebenbemerkung: '''Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation
'''Nebenbemerkung: '''Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation
Zeile 42: Zeile 42:




Wichtig ! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber ! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig , aber hier homogen verteilt !→ einfache Integration.
Wichtig! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig, aber hier homogen verteilt!→ einfache Integration.


Auswertung liefert
Auswertung liefert
Zeile 57: Zeile 57:


setzt man
setzt man
:<math>\bar{r}\acute{\ }=\bar{r}-{{\bar{r}}_{e}}</math>
:<math>\bar{r}\acute{\ }=\bar{r}-{{\bar{r}}_{e}}</math>,
, wobei
wobei
:<math>{{\bar{r}}_{e}}</math>
:<math>{{\bar{r}}_{e}}</math>
das Zentrum der elektrischen Ladung angibt,
das Zentrum der elektrischen Ladung angibt,
Zeile 74: Zeile 74:
:<math>{{\bar{F}}_{e}}=-{{\bar{F}}_{K}}</math>
:<math>{{\bar{F}}_{e}}=-{{\bar{F}}_{K}}</math>


Aufstellen der Bewegungsgleichungen ( inklusive einem äußeren Feld
Aufstellen der Bewegungsgleichungen (inklusive einem äußeren Feld
:<math>{{\bar{E}}_{a}}</math>
:<math>{{\bar{E}}_{a}}</math>)
):
:


:<math>\begin{align}
:<math>\begin{align}
Zeile 99: Zeile 99:
\end{align}</math>
\end{align}</math>


Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial ! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können !
Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können!


Jedenfalls im stationären Zustand gilt:
Jedenfalls im stationären Zustand gilt:
Zeile 105: Zeile 105:
:<math>\bar{r}=\frac{e}{{{\omega }_{0}}^{2}{{m}_{e}}}{{\bar{E}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)</math>
:<math>\bar{r}=\frac{e}{{{\omega }_{0}}^{2}{{m}_{e}}}{{\bar{E}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)</math>


( Dynamik mit Dämpfung)
(Dynamik mit Dämpfung)


:<math>\Rightarrow {{\chi }_{e}}\left( \omega  \right)</math>
:<math>\Rightarrow {{\chi }_{e}}\left( \omega  \right)</math>
Zeile 195: Zeile 195:


Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet.
Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet.
Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation ( eigentlich Dipoldichte) umschreiben:
Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation (eigentlich Dipoldichte) umschreiben:


:<math>\begin{align}
:<math>\begin{align}
Zeile 212: Zeile 212:
:<math>{{\bar{E}}_{Kugel}}=-\nabla \Phi =-\frac{1}{{{\varepsilon }_{0}}}\frac{{\bar{P}}}{3}r\le a</math>
:<math>{{\bar{E}}_{Kugel}}=-\nabla \Phi =-\frac{1}{{{\varepsilon }_{0}}}\frac{{\bar{P}}}{3}r\le a</math>


für das elektrische Feld im Inneren der Kugel ( homogen polarisiert).
für das elektrische Feld im Inneren der Kugel (homogen polarisiert).


<u>'''Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:'''</u>
<u>'''Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:'''</u>
Zeile 239: Zeile 239:
sein muss
sein muss


Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel ( wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld !
Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel (wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld!


'''Zusammenhang zwischen P und makroskopischem Feld E:'''
'''Zusammenhang zwischen P und makroskopischem Feld E:'''

Aktuelle Version vom 13. September 2010, 00:22 Uhr




Ziel: Berechnung der Materialkonstanten

5.5 Mikroskopisches Modell der Polarisierbarkeit

Ziel: Berechnung der Materialkonstanten

aus einfachen mikroskopischen Modellen Methode: Berechne die induzierte mittlere elektrische Dipoldichte

für ein gegebenes Feld

.


Nebenbemerkung: Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation

Klassisches Atommodell:

homogen geladene Kugel mit Radius R und Elektronenladung

Außerdem ein punktförmiger Kern mit

am Ort

Merke:

Auch diese Berechnungen geschehen, wie im NOTFALL grundsätzlich zu empfehlen, durch Lösen integraler Darstellungen der Maxwellgleichungen

Ziel: Berechnung des elektrischen Feldes

der Elektronen nach außen:

Gauß- Gesetz


Wir müssen aber zurückkehren zu den mikroskopischen Maxwellgleichungen


Wichtig! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig, aber hier homogen verteilt!→ einfache Integration.

Auswertung liefert

Natürlich nur für

setzt man

,
wobei

das Zentrum der elektrischen Ladung angibt,

so gewinnt man das rotationssymmetrische Ergebnis

und die Kraft auf den Kern folgt gemäß:

wegen actio = reactio folgt dann für die Kraft auf die Elektronen:

Aufstellen der Bewegungsgleichungen (inklusive einem äußeren Feld

)

Also folgt für die Relativbewegung:

als relativer Abstand

Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können!

Jedenfalls im stationären Zustand gilt:

(Dynamik mit Dämpfung)

Als Ergebnis gewinnen wir ein statisch mikroskopisch elektrisches Dipolmoment, welches sich über p=qd bereits hinschreiben läßt und welches auch übereinstimmt mit Gleichungen von oben zur exakten Berechnung des elektrischen Dipolmoments:

Die Polarisierbarkeit des Atoms, ein mikroskopischer Parameter. Entsprechend:

wegen Symmetrie

makroskopisch gemittelte Energiedichte:

mit der mittleren Atomdichte n

Selbstkonsistente Berechnung des Lokalfeldes Ea:

Wichtig: Berücksichtigung der Felder, die durch andere elektrische Dipole erzeugt werden:

Gedankenexperiment


Feld einer homogenen polarisierten Kugel:

Ansatz: homogen geladene Kugel:

Also:


Bestimmung der Integrationskonstanten:

die homogen polarisierte Kugel

Bei der homogen polarisierten Kugel kann man 2 entgegegengesetzt homogen geladene Kugeln mit Abstand ro annehmen.

Dann: ro → 0


Bilde:

Das Dipolmoment der herausgeschnittenen Kugel.

Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet. Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation (eigentlich Dipoldichte) umschreiben:

Wir gewinnen innerhalb der Kugel homogene Polarisation und außerhalb ein Dipolpotenzial.

für das elektrische Feld im Inneren der Kugel (homogen polarisiert).

Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:


das äußere Feld wird erzeugt durch Atome, die sich außerhalb der Hohlkugel befinden. Das innere Feld durch Atome im Inneren der Hohlkugel. Gezeichnet: Lokalfeld einer polarisierten dielektrischen Kugel im homogenen elektrischen Feld


Das Lokalfeld im INNEREN des KugelHOHLRAUMS, welcher aus dem Volumen herausgeschnitten wurde:

Letztes wurde von Lorentz eingeführt als "Korrekturfeld"

weil

sein muss

Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel (wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld!

Zusammenhang zwischen P und makroskopischem Feld E:

Formel von Clausius - Masotti für polarisierte Kugel