Gleichgewichtsbedingungen: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Thermodynamik|3|5}}</noinclude> Aus <math>\Lambda \ge 0</math> folgen Bedingungen für das thermodynamische Gleichgewicht <math>\Lam…“
 
*>SchuBot
Mathematik einrücken
Zeile 11: Zeile 11:
'''Allgemein'''
'''Allgemein'''


<math>K\left( \rho ,{{\rho }^{0}} \right)=tr\left[ \rho \ln \rho -{{\rho }^{0}}\ln {{\rho }^{0}}-\left( \rho -{{\rho }^{0}} \right)\ln {{\rho }^{0}} \right]=I-{{I}^{0}}+{{\lambda }_{\nu }}^{0}\left( \left\langle {{M}^{\nu }} \right\rangle -{{\left\langle {{M}^{\nu }} \right\rangle }^{0}} \right)</math>
:<math>K\left( \rho ,{{\rho }^{0}} \right)=tr\left[ \rho \ln \rho -{{\rho }^{0}}\ln {{\rho }^{0}}-\left( \rho -{{\rho }^{0}} \right)\ln {{\rho }^{0}} \right]=I-{{I}^{0}}+{{\lambda }_{\nu }}^{0}\left( \left\langle {{M}^{\nu }} \right\rangle -{{\left\langle {{M}^{\nu }} \right\rangle }^{0}} \right)</math>


für
für


<math>{{\rho }^{0}}=\exp \left[ {{\Psi }^{0}}-{{\lambda }_{\nu }}^{0}{{M}^{\nu }} \right]</math>
:<math>{{\rho }^{0}}=\exp \left[ {{\Psi }^{0}}-{{\lambda }_{\nu }}^{0}{{M}^{\nu }} \right]</math>


====einfaches thermisches System:====
====einfaches thermisches System:====


<math>\Lambda =kTK\left( \rho ,{{\rho }^{0}} \right)=U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)-{{T}^{0}}\left( S-{{S}^{0}} \right)\ge 0</math>
:<math>\Lambda =kTK\left( \rho ,{{\rho }^{0}} \right)=U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)-{{T}^{0}}\left( S-{{S}^{0}} \right)\ge 0</math>


# <u>'''isoliertes System'''</u>
# <u>'''isoliertes System'''</u>
Zeile 27: Zeile 27:
V= const.
V= const.


<math>{{N}^{\alpha }}=</math>
:<math>{{N}^{\alpha }}=</math>


const.
const.


<math>\Rightarrow \left( S-{{S}^{0}} \right)\le 0</math>
:<math>\Rightarrow \left( S-{{S}^{0}} \right)\le 0</math>


* S maximal im Gleichgewicht !
* S maximal im Gleichgewicht !
Zeile 42: Zeile 42:
V= const.
V= const.


<math>{{N}^{\alpha }}=</math>
:<math>{{N}^{\alpha }}=</math>


const.
const.


<math>\Rightarrow \left( U-{{U}^{0}} \right)\ge 0</math>
:<math>\Rightarrow \left( U-{{U}^{0}} \right)\ge 0</math>


* U minimal im Gleichgewicht !
* U minimal im Gleichgewicht !
Zeile 57: Zeile 57:
V= const.
V= const.


<math>{{N}^{\alpha }}=</math>
:<math>{{N}^{\alpha }}=</math>


const.
const.


<math>\Lambda =\left( U-TS \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}} \right)+S\left( T-{{T}^{0}} \right)+{{p}^{0}}\left( V-{{V}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math>
:<math>\Lambda =\left( U-TS \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}} \right)+S\left( T-{{T}^{0}} \right)+{{p}^{0}}\left( V-{{V}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
 
mit
 
<math>\begin{align}


& \left( U-TS \right)=F \\
& \left( U-TS \right)=F \\
Zeile 75: Zeile 71:
\end{align}</math>
\end{align}</math>


<math>\Rightarrow \left( F-{{F}^{0}} \right)\ge 0</math>
:<math>\Rightarrow \left( F-{{F}^{0}} \right)\ge 0</math>


* F minimal im Gleichgewicht !
* F minimal im Gleichgewicht !
Zeile 86: Zeile 82:
p= const.
p= const.


<math>{{N}^{\alpha }}=</math>
:<math>{{N}^{\alpha }}=</math>


const.
const.


<math>\Lambda =\left( U-TS+pV \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}}+{{p}^{0}}{{V}^{0}} \right)-V\left( p-{{p}^{0}} \right)+S\left( T-{{T}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math>
:<math>\Lambda =\left( U-TS+pV \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}}+{{p}^{0}}{{V}^{0}} \right)-V\left( p-{{p}^{0}} \right)+S\left( T-{{T}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
 
mit
 
<math>\begin{align}


& \left( U-TS+pV \right)=G \\
& \left( U-TS+pV \right)=G \\
Zeile 104: Zeile 96:
\end{align}</math>
\end{align}</math>


<math>\Rightarrow \left( G-{{G}^{0}} \right)\ge 0</math>
:<math>\Rightarrow \left( G-{{G}^{0}} \right)\ge 0</math>


* G minimal im Gleichgewicht !
* G minimal im Gleichgewicht !
Zeile 115: Zeile 107:
p= const.
p= const.


<math>{{N}^{\alpha }}=</math>
:<math>{{N}^{\alpha }}=</math>


const.
const.


<math>\Lambda =\left( U+pV \right)-\left( {{U}^{0}}+{{p}^{0}}{{V}^{0}} \right)-V\left( p-{{p}^{0}} \right)+{{T}^{0}}\left( S-{{S}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math>
:<math>\Lambda =\left( U+pV \right)-\left( {{U}^{0}}+{{p}^{0}}{{V}^{0}} \right)-V\left( p-{{p}^{0}} \right)+{{T}^{0}}\left( S-{{S}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
 
mit
 
<math>\begin{align}


& \left( U+pV \right)=H \\
& \left( U+pV \right)=H \\
Zeile 133: Zeile 121:
\end{align}</math>
\end{align}</math>


<math>\Rightarrow \left( H-{{H}^{0}} \right)\ge 0</math>
:<math>\Rightarrow \left( H-{{H}^{0}} \right)\ge 0</math>


* H minimal im Gleichgewicht !
* H minimal im Gleichgewicht !
Zeile 144: Zeile 132:
V= const.
V= const.


<math>\mu =</math>
:<math>\mu =</math>


const.
const.


<math>\Lambda =\left( U-TS-\mu N \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}}-{{\mu }^{0}}{{N}^{0}} \right)-{{p}^{0}}\left( V-{{V}^{0}} \right)+S\left( T-{{T}^{0}} \right)\acute{\ }-N\left( \mu -{{\mu }^{0}} \right)\ge 0</math>
:<math>\Lambda =\left( U-TS-\mu N \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}}-{{\mu }^{0}}{{N}^{0}} \right)-{{p}^{0}}\left( V-{{V}^{0}} \right)+S\left( T-{{T}^{0}} \right)\acute{\ }-N\left( \mu -{{\mu }^{0}} \right)\ge 0</math> mit <math>\begin{align}
 
mit
 
<math>\begin{align}


& \left( U-TS-\mu N \right)=J \\
& \left( U-TS-\mu N \right)=J \\
Zeile 162: Zeile 146:
\end{align}</math>
\end{align}</math>


<math>\Rightarrow \left( J-{{J}^{0}} \right)\ge 0</math>
:<math>\Rightarrow \left( J-{{J}^{0}} \right)\ge 0</math>


* J minimal im Gleichgewicht !
* J minimal im Gleichgewicht !
Zeile 189: Zeile 173:
gesamte Gibbsche freie Energie:
gesamte Gibbsche freie Energie:


<math>G=N\acute{\ }g\acute{\ }+N\acute{\ }\acute{\ }g\acute{\ }\acute{\ }</math>
:<math>G=N\acute{\ }g\acute{\ }+N\acute{\ }\acute{\ }g\acute{\ }\acute{\ }</math>


mit g= molare Gibbsche freie Energie : G (T,p,N) = g(T,p)N = µ ( chemisches Potenzial ( s.o.))
mit g= molare Gibbsche freie Energie : G (T,p,N) = g(T,p)N = µ ( chemisches Potenzial ( s.o.))
Zeile 195: Zeile 179:
Zulässige Abweichungen vom Gleichgewicht:
Zulässige Abweichungen vom Gleichgewicht:


<math>\Delta N\acute{\ }+\Delta N\acute{\ }\acute{\ }=0</math>
:<math>\Delta N\acute{\ }+\Delta N\acute{\ }\acute{\ }=0</math>


durch Verdampfung bei konstantem Dampfdruck
durch Verdampfung bei konstantem Dampfdruck


<math>\Delta G=\Delta N\acute{\ }g\acute{\ }+\Delta N\acute{\ }\acute{\ }g\acute{\ }\acute{\ }=\left( g\acute{\ }-g\acute{\ }\acute{\ } \right)\Delta N\acute{\ }=!=0</math>
:<math>\Delta G=\Delta N\acute{\ }g\acute{\ }+\Delta N\acute{\ }\acute{\ }g\acute{\ }\acute{\ }=\left( g\acute{\ }-g\acute{\ }\acute{\ } \right)\Delta N\acute{\ }=!=0</math>


da ja im Gleichgewicht <math>G=</math>
da ja im Gleichgewicht <math>G=</math>
Zeile 207: Zeile 191:
Also:
Also:


<math>\Rightarrow g\acute{\ }\left( T,P(T) \right)=!=g\acute{\ }\acute{\ }\left( T,P(T) \right)</math>
:<math>\Rightarrow g\acute{\ }\left( T,P(T) \right)=!=g\acute{\ }\acute{\ }\left( T,P(T) \right)</math> mit <math>{{\left( \frac{\partial g}{\partial T} \right)}_{p}}=-s</math>
 
mit
 
<math>{{\left( \frac{\partial g}{\partial T} \right)}_{p}}=-s</math>


( molare Entropie)
( molare Entropie)
Zeile 217: Zeile 197:
und
und


<math>{{\left( \frac{\partial g}{\partial p} \right)}_{T}}=v</math>
:<math>{{\left( \frac{\partial g}{\partial p} \right)}_{T}}=v</math>


( Molvolumen)
( Molvolumen)
Zeile 223: Zeile 203:
folgt:
folgt:


<math>dg=-sdT+vdp</math>
:<math>dg=-sdT+vdp</math>


weiter:
weiter:


<math>\begin{align}
:<math>\begin{align}


& g\acute{\ }=g\acute{\ }\acute{\ } \\
& g\acute{\ }=g\acute{\ }\acute{\ } \\
Zeile 237: Zeile 217:
Also haben wir für ein isothermes, isobares System:
Also haben wir für ein isothermes, isobares System:


<math>\begin{align}
:<math>\begin{align}


& p=P(T) \\
& p=P(T) \\
Zeile 249: Zeile 229:
oder:
oder:


<math>\frac{dP}{dT}=\frac{q}{\left( v\acute{\ }\acute{\ }-v\acute{\ } \right)T}</math>
:<math>\frac{dP}{dT}=\frac{q}{\left( v\acute{\ }\acute{\ }-v\acute{\ } \right)T}</math>


mit der molaren Verdampfungswärme <math>q:=\left( s\acute{\ }\acute{\ }-s\acute{\ } \right)T</math>
mit der molaren Verdampfungswärme <math>q:=\left( s\acute{\ }\acute{\ }-s\acute{\ } \right)T</math>
Zeile 255: Zeile 235:
Anwendung auf ein ideales Gas: ( weit weg vom kritischen Punkt !)
Anwendung auf ein ideales Gas: ( weit weg vom kritischen Punkt !)


<math>v\acute{\ }\acute{\ }=\frac{RT}{P(T)}>>v\acute{\ }</math>
:<math>v\acute{\ }\acute{\ }=\frac{RT}{P(T)}>>v\acute{\ }</math>


( Flüssigkeiten)
( Flüssigkeiten)


<math>\frac{dP}{dT}=\frac{q}{R{{T}^{2}}}P</math>
:<math>\frac{dP}{dT}=\frac{q}{R{{T}^{2}}}P</math>


<math>\begin{align}
:<math>\begin{align}


& \Rightarrow \frac{dP}{P}=\frac{q}{R{{T}^{2}}}dT \\
& \Rightarrow \frac{dP}{P}=\frac{q}{R{{T}^{2}}}dT \\
Zeile 283: Zeile 263:
Kugelförmiges Tröpfchen:
Kugelförmiges Tröpfchen:


<math>\begin{align}
:<math>\begin{align}


& d\omega =d\left( 4\pi {{r}^{2}} \right)=8\pi rdr \\
& d\omega =d\left( 4\pi {{r}^{2}} \right)=8\pi rdr \\
Zeile 295: Zeile 275:
Also ist die geleistete Arbeit bei der Volumenänderung der Flüssigkeit ( dV´):
Also ist die geleistete Arbeit bei der Volumenänderung der Flüssigkeit ( dV´):


<math>=\sigma \frac{2}{r}dV\acute{\ }</math>
:<math>=\sigma \frac{2}{r}dV\acute{\ }</math>


und insgesamt mit der Druckarbeit:
und insgesamt mit der Druckarbeit:


<math>\delta W=-p\acute{\ }dV\acute{\ }-p\acute{\ }\acute{\ }dV\acute{\ }\acute{\ }+\sigma \frac{2}{r}dV\acute{\ }</math>
:<math>\delta W=-p\acute{\ }dV\acute{\ }-p\acute{\ }\acute{\ }dV\acute{\ }\acute{\ }+\sigma \frac{2}{r}dV\acute{\ }</math>






<math>\Sigma </math>
:<math>\Sigma </math>


sei der Dampf und die Tröpfchen.
sei der Dampf und die Tröpfchen.
Zeile 313: Zeile 293:
F(T,V)= Minimal im Gleichgewicht !
F(T,V)= Minimal im Gleichgewicht !


<math>\begin{align}
:<math>\begin{align}


& dV\acute{\ }+dV\acute{\ }\acute{\ }=0 \\
& dV\acute{\ }+dV\acute{\ }\acute{\ }=0 \\
Zeile 325: Zeile 305:
mit Gibbs Fundamentalrelation:
mit Gibbs Fundamentalrelation:


<math>dF=d\left( U-TS \right)=dU-TdS=!=\delta W=\left( p\acute{\ }\acute{\ }-p\acute{\ }+\frac{2}{r}\sigma  \right)dV\acute{\ }=!=0</math>
:<math>dF=d\left( U-TS \right)=dU-TdS=!=\delta W=\left( p\acute{\ }\acute{\ }-p\acute{\ }+\frac{2}{r}\sigma  \right)dV\acute{\ }=!=0</math>


F im Minimum !!!
F im Minimum !!!
Zeile 331: Zeile 311:
Also:
Also:


<math>p\acute{\ }=\left( p\acute{\ }\acute{\ }+\frac{2}{r}\sigma  \right)</math>
:<math>p\acute{\ }=\left( p\acute{\ }\acute{\ }+\frac{2}{r}\sigma  \right)</math>


Der Druck im Inneren des Tröpfchens p´ ist höher als außen im Dampf p´´=P(T)
Der Druck im Inneren des Tröpfchens p´ ist höher als außen im Dampf p´´=P(T)
Zeile 354: Zeile 334:
P(T,r):
P(T,r):


<math>P\left( T,r \right)</math>
:<math>P\left( T,r \right)</math>


dabei sind jetzt p, T vorgegeben ( statt V und T):
dabei sind jetzt p, T vorgegeben ( statt V und T):


<math>dG=\left( g\acute{\ }-g\acute{\ }\acute{\ } \right)dN\acute{\ }=!=0</math>
:<math>dG=\left( g\acute{\ }-g\acute{\ }\acute{\ } \right)dN\acute{\ }=!=0</math>


, da G = minimal !
, da G = minimal !


<math>\Rightarrow g\acute{\ }\left( T,p\acute{\ } \right)=g\acute{\ }\acute{\ }\left( T,p\acute{\ }\acute{\ } \right)</math>
:<math>\Rightarrow g\acute{\ }\left( T,p\acute{\ } \right)=g\acute{\ }\acute{\ }\left( T,p\acute{\ }\acute{\ } \right)</math> mit <math>p\acute{\ }=\left( P(T,r)+\frac{2}{r}\sigma  \right)</math>
 
mit
 
<math>p\acute{\ }=\left( P(T,r)+\frac{2}{r}\sigma  \right)</math>


Differenziation nach r bei festem T:
Differenziation nach r bei festem T:


<math>\begin{align}
:<math>\begin{align}


& {{\left( \frac{\partial g\acute{\ }\left( T,p\acute{\ } \right)}{\partial p\acute{\ }} \right)}_{T}}\left[ {{\left( \frac{\partial P}{\partial r} \right)}_{T}}-\frac{2}{{{r}^{2}}}\sigma  \right]={{\left( \frac{\partial g\acute{\ }\acute{\ }}{\partial p\acute{\ }\acute{\ }} \right)}_{T}}{{\left( \frac{\partial P}{\partial r} \right)}_{T}} \\
& {{\left( \frac{\partial g\acute{\ }\left( T,p\acute{\ } \right)}{\partial p\acute{\ }} \right)}_{T}}\left[ {{\left( \frac{\partial P}{\partial r} \right)}_{T}}-\frac{2}{{{r}^{2}}}\sigma  \right]={{\left( \frac{\partial g\acute{\ }\acute{\ }}{\partial p\acute{\ }\acute{\ }} \right)}_{T}}{{\left( \frac{\partial P}{\partial r} \right)}_{T}} \\
Zeile 432: Zeile 408:
'''Gleichgewicht'''
'''Gleichgewicht'''


<math>dG=\sum\limits_{a=1}^{K}{{}}\sum\limits_{b=1}^{Ph}{{}}{{\mu }_{b}}^{a}d{{N}_{b}}^{a}=!=0</math>
:<math>dG=\sum\limits_{a=1}^{K}{{}}\sum\limits_{b=1}^{Ph}{{}}{{\mu }_{b}}^{a}d{{N}_{b}}^{a}=!=0</math>


wegen:
wegen:


<math>G(T,p)=\min .</math>
:<math>G(T,p)=\min .</math>


'''Nebenbedingung'''
'''Nebenbedingung'''


<math>d{{N}^{a}}=\sum\limits_{b=1}^{Ph}{{}}d{{N}_{b}}^{a}=!=0</math>
:<math>d{{N}^{a}}=\sum\limits_{b=1}^{Ph}{{}}d{{N}_{b}}^{a}=!=0</math>


mit Lagrange- Multiplikator <math>{{\tau }^{a}}</math>
mit Lagrange- Multiplikator <math>{{\tau }^{a}}</math>
Zeile 446: Zeile 422:
:
:


<math>\begin{align}
:<math>\begin{align}


& \sum\limits_{a=1}^{K}{{}}\sum\limits_{b=1}^{Ph}{{}}\left( {{\mu }_{b}}^{a}-{{\tau }^{a}} \right)d{{N}_{b}}^{a}=!=0 \\
& \sum\limits_{a=1}^{K}{{}}\sum\limits_{b=1}^{Ph}{{}}\left( {{\mu }_{b}}^{a}-{{\tau }^{a}} \right)d{{N}_{b}}^{a}=!=0 \\
Zeile 456: Zeile 432:
in jeder Phase gleich
in jeder Phase gleich


<math>\Rightarrow {{\mu }_{1}}^{a}={{\mu }_{2}}^{a}=...={{\mu }_{Ph}}^{a}</math>
:<math>\Rightarrow {{\mu }_{1}}^{a}={{\mu }_{2}}^{a}=...={{\mu }_{Ph}}^{a}</math>


Also
Also


<math>Ph-1</math>
:<math>Ph-1</math>


Gleichungen für jede Komponente a !
Gleichungen für jede Komponente a !
Zeile 480: Zeile 456:
entsprechend der Zahl der thermodynamischen Freiheitsgrade beträgt:
entsprechend der Zahl der thermodynamischen Freiheitsgrade beträgt:


<math>f=2+Ph\left( K-1 \right)-k(Ph-1)=K-Ph+2</math>
:<math>f=2+Ph\left( K-1 \right)-k(Ph-1)=K-Ph+2</math>


Dies ist die Gibbsche Phasenregel:
Dies ist die Gibbsche Phasenregel:


<math>f=K-Ph+2</math>
:<math>f=K-Ph+2</math>


'''Beispiele:'''
'''Beispiele:'''


# <u>Gas einer reinen Substanz:</u>
# <u>Gas einer reinen Substanz:</u>
<math>\begin{align}
:<math>\begin{align}


& K=Ph=1 \\
& K=Ph=1 \\

Version vom 12. September 2010, 18:29 Uhr




Aus

folgen Bedingungen für das thermodynamische Gleichgewicht

unter verschiedenen Einschränkungen an die Abweichungen von

vom Gleichgewicht:

Allgemein

für

einfaches thermisches System:

  1. isoliertes System

U= const.

V= const.

const.

  • S maximal im Gleichgewicht !
  • isolierte Systeme erreichen ihr Gleichgewicht mit einem Maximum der Entropie !
  1. isentropisch - isochores System

S= const.

V= const.

const.

  • U minimal im Gleichgewicht !
  • isentropisch - isochore Systeme erreichen ihr Gleichgewicht mit einem Minimum der inneren Energie !
  1. isotherm - isochores System

T= const.

V= const.

const.

mit
  • F minimal im Gleichgewicht !
  • isotherm - isochore Systeme erreichen ihr Gleichgewicht mit einem Minimum der freien Energie !
  1. isotherm - isobares System

T= const.

p= const.

const.

mit
  • G minimal im Gleichgewicht !
  • isotherm - isobare Systeme erreichen ihr Gleichgewicht mit einem Minimum der Gibb´schen freien Energie  !
  1. isentropisch - isobares System

S= const.

p= const.

const.

mit
  • H minimal im Gleichgewicht !
  • isentropisch - isobare Systeme erreichen ihr Gleichgewicht mit einem Minimum der Enthalpie H
  1. isotherm- isochores System mit festem chemischen Potenzial

T= const.

V= const.

const.

mit
  • J minimal im Gleichgewicht !
  • isotherm- isochore Systeme erreichen ihr Gleichgewicht mit einem Minimum des großkanonischen Potenzials J

Anwendungsbeispiele

  1. Dampfdruck

Gleichgewicht zweier Phasen der selben Substanz ( Dampf und Flüssigkeit)

N´ mol Flüssigkeit und N´´ mol Gas

Gleichgewichtsbedingung ( G minimal !)

  • G(T,p) minimal im Gleichgewicht !
  • isotherm - isobare Systeme erreichen ihr Gleichgewicht mit einem Minimum der Gibb´schen freien Energie  !

Gegeben: T

Gesucht: Bei welchem Dampfdruck herrscht Gleichgewicht , also Koexistenz zwischen Gas und Flüssigkeit ?

  • Dampfdruck p = p(T) !

gesamte Gibbsche freie Energie:

mit g= molare Gibbsche freie Energie : G (T,p,N) = g(T,p)N = µ ( chemisches Potenzial ( s.o.))

Zulässige Abweichungen vom Gleichgewicht:

durch Verdampfung bei konstantem Dampfdruck

da ja im Gleichgewicht

minimal !!

Also:

mit

( molare Entropie)

und

( Molvolumen)

folgt:

weiter:

Also haben wir für ein isothermes, isobares System:

( Clausius - Clapeyron- Gleichung)

oder:

mit der molaren Verdampfungswärme

Anwendung auf ein ideales Gas: ( weit weg vom kritischen Punkt !)

( Flüssigkeiten)

Dampfdruck eines idealen Gases ( q>0, falls Wärme dem System zur verdampfung zugeführt wird !!)

b) Dampfdruck von Tröpfchen !

Bisher: ebene Phasengrenzfläche

jetzt: gekrümmte Phasengrenzfläche -> zusätzliche Arbeit

bei Vergrößerung der Oberfläche

über die Oberflächenspannung

Kugelförmiges Tröpfchen:

Also ist die geleistete Arbeit bei der Volumenänderung der Flüssigkeit ( dV´):

und insgesamt mit der Druckarbeit:


sei der Dampf und die Tröpfchen.

Diese seien in ein Gefäß mit festem Volumen V eingeschlossen.

Isochorer / isothermer Prozess -> Minimum der freien Energie F:

F(T,V)= Minimal im Gleichgewicht !

( zulässige Abweichung vom Gleichgewicht = Volumenerhaltung !)

mit Gibbs Fundamentalrelation:

F im Minimum !!!

Also:

Der Druck im Inneren des Tröpfchens p´ ist höher als außen im Dampf p´´=P(T)

und zwar mit dem Inversen des Radius !

Kleinere Tröpfchen haben also höheren Innendruck als Größere !

Also:


ein kleiner Luftballon bläst einen größeren auf !, p1 > p2

Nebenbemerkung

Der intensive Parameter p ist im Gleichgewicht zwischen Tröpfchen und Dampf nicht gleich !, da p und Oberflächenspannung

nicht unabhängig sind !

Wir haben bisher den Druck im INNEREN eines Tröpfchens ausgerechnet, suchen jedoch den Dampfdruck der Tröpfchensuppe :

P(T,r):

dabei sind jetzt p, T vorgegeben ( statt V und T):

, da G = minimal !

mit

Differenziation nach r bei festem T:

Als Dampfdruck eines Tröpfchens ( entsprechend der Gleichgewichtsbedingung) !

Das heißt: Für vorgegebenen Außendruck Po existiert ein Radius ro, so dass für

r>ro das Tröpfchen anwächst ( Kondensation)

r<ro das Tröpfchen kleiner wird ( evaporiert)

Dabei:

ist der zum Außendruck Po gehörende KRITISCHE TRÖPFCHENRADIUS ( instabil)

Ostwald- reifung

Stabiles Tröpfchen durch globale Einschränkungen ( Gesamtzahl der Moleküle)

Bei Konkurrenz vieler verschiedener großer Tröpfchen überlebt im Laufe der zeit nur das anfänglich größte ( Selektionsmechanismus)

( wird auch in Systemen fern vom thermodynamischen Gleichgewicht beobachtet -> z.B. Domänen, Stromfilamente)

Übung

Dampfdruckerniedrigung

  • Siedepunktserhöhung , Gefrierpunktserniedrigung durch Mischung !
  1. Gibbb´sche Phasenregel

Man betrachte ein System, das aus K chemischen Komponenten in Ph Phasen zusammengesetzt ist:

Komponenten: a = 1,.., K

Phasen: b= 1,...,Ph

( fest, flüssig, gasf..)

Annahme:

Keine chemischen Reaktionen:

T,p,

fest !

Gleichgewicht

wegen:

Nebenbedingung

mit Lagrange- Multiplikator

in jeder Phase gleich

Also

Gleichungen für jede Komponente a !

Dies entspricht insgesamt

Gleichungen !

In einer Phase gibt es K-1 relative Konzentrationen der Komponenten !

insgesamt also

relative Konzentrationen in allen Phasen !

Das heißt: Die Zahl der unabhängigen Variablen

als unabhängige relative Konzentrationen !,

entsprechend der Zahl der thermodynamischen Freiheitsgrade beträgt:

Dies ist die Gibbsche Phasenregel:

Beispiele:

  1. Gas einer reinen Substanz:
  • 2 thermodynamische Variablen können beliebig gewählt werden
  1. Gas und Flüssigkeit in Koexistenz
  • Ph =2
  • f=1 -> T kann beeispielsweise beliebig gewählt werden , P(T) fest , folgt Dampfdruckkurve
  1. Gas, Flüssigkeit und feste Phase in Koexistenz -> f=0, Tripelpunkt T !