Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.995.25 on revision:995

* Page found: Master Gleichung (eq math.995.25)

(force rerendering)

Occurrences on the following pages:

Hash: 336975bdd18b87327813965d6049aedc

TeX (original user input):

\begin{align}
  & {{d}_{t}}\tilde{\rho }={{d}_{t}}\left( U_{0}^{\dagger }\rho {{U}_{0}} \right) \\ 
 & =\mathfrak{i}{{H}_{0}}U_{0}^{\dagger }\rho {{U}_{0}}-iU_{0}^{\dagger }\rho {{H}_{0}}{{U}_{0}}+U_{0}^{\dagger }{{d}_{t}}\left( \rho  \right){{U}_{0}} \\ 
 & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ H,\rho  \right]{{U}_{0}} \\ 
 & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ {{H}_{0}}+{{H}_{SB}},\rho  \right]{{U}_{0}} \\ 
 & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ {{H}_{SB}},\rho  \right]{{U}_{0}} \\ 
 & =-\mathfrak{i}\left[ {{{\tilde{H}}}_{SB}},\tilde{\rho } \right] \\ 
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.175 KB / 547 B) :

dtρ~=dt(U0ρU0)=iH0U0ρU0iU0ρH0U0+U0dt(ρ)U0=i[H0,ρ~]iU0[H,ρ]U0=i[H0,ρ~]iU0[H0+HSB,ρ]U0=i[H0,ρ~]i[H0,ρ~]iU0[HSB,ρ]U0=i[H~SB,ρ~]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C1;</mi><mo>~</mo></mover></mrow></mrow><mo>=</mo><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2020;</mo></mrow></msubsup><mi>&#x03C1;</mi><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msubsup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2020;</mo></mrow></msubsup><mi>&#x03C1;</mi><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>&#x2212;</mo><mi>i</mi><msubsup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2020;</mo></mrow></msubsup><mi>&#x03C1;</mi><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><msubsup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2020;</mo></mrow></msubsup><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C1;</mi><mo>~</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msubsup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2020;</mo></mrow></msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>H</mi><mo>,</mo><mi>&#x03C1;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C1;</mi><mo>~</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msubsup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2020;</mo></mrow></msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>B</mi></mrow></mrow></msub><mo>,</mo><mi>&#x03C1;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C1;</mi><mo>~</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C1;</mi><mo>~</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msubsup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2020;</mo></mrow></msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>B</mi></mrow></mrow></msub><mo>,</mo><mi>&#x03C1;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>B</mi></mrow></mrow></msub><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C1;</mi><mo>~</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Master Gleichung page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results