Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.940.67 on revision:940

* Page found: Verallgemeinerte kanonische Verteilung (eq math.940.67)

(force rerendering)

Occurrences on the following pages:

Hash: 921cf7e74a3a4a2a981118792e2712cf

TeX (original user input):

\begin{align}
  & K\left( P+\delta P,P \right)=\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln {{P}_{i}} \\ 
 & \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)=I\left( P+\delta P \right) \\ 
 & \Rightarrow K\left( P+\delta P,P \right)=\left( \Psi +\delta \Psi  \right)-\left( {{\lambda }_{n}}+\delta {{\lambda }_{n}} \right)\left( \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle  \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\left( \Psi -{{\lambda }_{n}}{{M}^{n}}_{i} \right) \\ 
 & \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\left( \Psi -{{\lambda }_{n}}{{M}^{n}}_{i} \right)=\Psi -{{\lambda }_{n}}\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right){{M}^{n}}_{i}=\Psi -{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle  \right) \\ 
 & \Rightarrow K\left( P+\delta P,P \right)=\left( \Psi +\delta \Psi  \right)-\left( {{\lambda }_{n}}+\delta {{\lambda }_{n}} \right)\left( \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle  \right)-\Psi +{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle  \right) \\ 
 & =\delta \Psi -\delta {{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle  \right) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&K\left(P+\delta P,P\right)=\sum \limits _{i}^{}{}\left({{P}_{i}}+\delta {{P}_{i}}\right)\ln \left({{P}_{i}}+\delta {{P}_{i}}\right)-\sum \limits _{i}^{}{}\left({{P}_{i}}+\delta {{P}_{i}}\right)\ln {{P}_{i}}\\&\sum \limits _{i}^{}{}\left({{P}_{i}}+\delta {{P}_{i}}\right)\ln \left({{P}_{i}}+\delta {{P}_{i}}\right)=I\left(P+\delta P\right)\\&\Rightarrow K\left(P+\delta P,P\right)=\left(\Psi +\delta \Psi \right)-\left({{\lambda }_{n}}+\delta {{\lambda }_{n}}\right)\left(\left\langle {{M}^{n}}\right\rangle +\delta \left\langle {{M}^{n}}\right\rangle \right)-\sum \limits _{i}^{}{}\left({{P}_{i}}+\delta {{P}_{i}}\right)\left(\Psi -{{\lambda }_{n}}{{M}^{n}}_{i}\right)\\&\sum \limits _{i}^{}{}\left({{P}_{i}}+\delta {{P}_{i}}\right)\left(\Psi -{{\lambda }_{n}}{{M}^{n}}_{i}\right)=\Psi -{{\lambda }_{n}}\sum \limits _{i}^{}{}\left({{P}_{i}}+\delta {{P}_{i}}\right){{M}^{n}}_{i}=\Psi -{{\lambda }_{n}}\left(\left\langle {{M}^{n}}\right\rangle +\delta \left\langle {{M}^{n}}\right\rangle \right)\\&\Rightarrow K\left(P+\delta P,P\right)=\left(\Psi +\delta \Psi \right)-\left({{\lambda }_{n}}+\delta {{\lambda }_{n}}\right)\left(\left\langle {{M}^{n}}\right\rangle +\delta \left\langle {{M}^{n}}\right\rangle \right)-\Psi +{{\lambda }_{n}}\left(\left\langle {{M}^{n}}\right\rangle +\delta \left\langle {{M}^{n}}\right\rangle \right)\\&=\delta \Psi -\delta {{\lambda }_{n}}\left(\left\langle {{M}^{n}}\right\rangle +\delta \left\langle {{M}^{n}}\right\rangle \right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (9.663 KB / 615 B) :

K(P+δP,P)=i(Pi+δPi)ln(Pi+δPi)i(Pi+δPi)lnPii(Pi+δPi)ln(Pi+δPi)=I(P+δP)K(P+δP,P)=(Ψ+δΨ)(λn+δλn)(Mn+δMn)i(Pi+δPi)(ΨλnMni)i(Pi+δPi)(ΨλnMni)=Ψλni(Pi+δPi)Mni=Ψλn(Mn+δMn)K(P+δP,P)=(Ψ+δΨ)(λn+δλn)(Mn+δMn)Ψ+λn(Mn+δMn)=δΨδλn(Mn+δMn)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>K</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>P</mi><mo>+</mo><mi>&#x03B4;</mi><mi>P</mi><mo>,</mo><mi>P</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ln</mi><mo>&#x2061;</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>I</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>P</mi><mo>+</mo><mi>&#x03B4;</mi><mi>P</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>K</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>P</mi><mo>+</mo><mi>&#x03B4;</mi><mi>P</mi><mo>,</mo><mi>P</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A8;</mi><mo>+</mo><mi>&#x03B4;</mi><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msub><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msub><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>K</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>P</mi><mo>+</mo><mi>&#x03B4;</mi><mi>P</mi><mo>,</mo><mi>P</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A8;</mi><mo>+</mo><mi>&#x03B4;</mi><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>+</mo><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>&#x03B4;</mi><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><mi>&#x03B4;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Verallgemeinerte kanonische Verteilung page

Identifiers

  • K
  • P
  • δ
  • P
  • P
  • i
  • Pi
  • δ
  • Pi
  • Pi
  • δ
  • Pi
  • i
  • Pi
  • δ
  • Pi
  • Pi
  • i
  • Pi
  • δ
  • Pi
  • Pi
  • δ
  • Pi
  • I
  • P
  • δ
  • P
  • K
  • P
  • δ
  • P
  • P
  • Ψ
  • δ
  • Ψ
  • λn
  • δ
  • λn
  • M
  • n
  • δ
  • M
  • n
  • i
  • Pi
  • δ
  • Pi
  • Ψ
  • λn
  • M
  • n
  • i
  • i
  • Pi
  • δ
  • Pi
  • Ψ
  • λn
  • M
  • n
  • i
  • Ψ
  • λn
  • i
  • Pi
  • δ
  • Pi
  • M
  • n
  • i
  • Ψ
  • λn
  • M
  • n
  • δ
  • M
  • n
  • K
  • P
  • δ
  • P
  • P
  • Ψ
  • δ
  • Ψ
  • λn
  • δ
  • λn
  • M
  • n
  • δ
  • M
  • n
  • Ψ
  • λn
  • M
  • n
  • δ
  • M
  • n
  • δ
  • Ψ
  • δ
  • λn
  • M
  • n
  • δ
  • M
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results