Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.940.55 on revision:940
* Page found: Verallgemeinerte kanonische Verteilung (eq math.940.55)
(force rerendering)Occurrences on the following pages:
Hash: 090e2914c4c302daa71349ee9ee5e3dc
TeX (original user input):
\begin{align}
& \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)=-\ln \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\
& \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =-\frac{\sum\limits_{i}^{{}}{{}}\left( -{{M}_{i}}^{n} \right)\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)}{\sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)} \\
& \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)={{e}^{-\Psi }} \\
& \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =\sum\limits_{i}^{{}}{{}}\left( {{M}_{i}}^{n} \right)\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\
& \exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)={{P}_{i}} \\
& \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =\sum\limits_{i}^{{}}{{}}\left( {{M}_{i}}^{n} \right){{P}_{i}} \\
& \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =\left\langle {{M}^{n}} \right\rangle \\
\end{align}
TeX (checked):
{\begin{aligned}&\Psi \left({{\lambda }_{1}},...{{\lambda }_{m}}\right)=-\ln \sum \limits _{i}^{}{}\exp \left(-{{\lambda }_{n}}{{M}_{i}}^{n}\right)\\&\Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\Psi =-{\frac {\sum \limits _{i}^{}{}\left(-{{M}_{i}}^{n}\right)\exp \left(-{{\lambda }_{n}}{{M}_{i}}^{n}\right)}{\sum \limits _{i}^{}{}\exp \left(-{{\lambda }_{n}}{{M}_{i}}^{n}\right)}}\\&\sum \limits _{i}^{}{}\exp \left(-{{\lambda }_{n}}{{M}_{i}}^{n}\right)={{e}^{-\Psi }}\\&\Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\Psi =\sum \limits _{i}^{}{}\left({{M}_{i}}^{n}\right)\exp \left(\Psi -{{\lambda }_{n}}{{M}_{i}}^{n}\right)\\&\exp \left(\Psi -{{\lambda }_{n}}{{M}_{i}}^{n}\right)={{P}_{i}}\\&\Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\Psi =\sum \limits _{i}^{}{}\left({{M}_{i}}^{n}\right){{P}_{i}}\\&\Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\Psi =\left\langle {{M}^{n}}\right\rangle \\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (6.881 KB / 605 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>−</mo><mi>ln</mi><mo>⁡</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">Ψ</mi><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi mathvariant="normal">Ψ</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">Ψ</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mo>−</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mo>−</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">Ψ</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">Ψ</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Verallgemeinerte kanonische Verteilung page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results