Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.940.55 on revision:940

* Page found: Verallgemeinerte kanonische Verteilung (eq math.940.55)

(force rerendering)

Occurrences on the following pages:

Hash: 090e2914c4c302daa71349ee9ee5e3dc

TeX (original user input):

\begin{align}
  & \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)=-\ln \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\ 
 & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =-\frac{\sum\limits_{i}^{{}}{{}}\left( -{{M}_{i}}^{n} \right)\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)}{\sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)} \\  
 & \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)={{e}^{-\Psi }} \\ 
 & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =\sum\limits_{i}^{{}}{{}}\left( {{M}_{i}}^{n} \right)\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\ 
 & \exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)={{P}_{i}} \\ 
 & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =\sum\limits_{i}^{{}}{{}}\left( {{M}_{i}}^{n} \right){{P}_{i}} \\ 
 & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =\left\langle {{M}^{n}} \right\rangle  \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\Psi \left({{\lambda }_{1}},...{{\lambda }_{m}}\right)=-\ln \sum \limits _{i}^{}{}\exp \left(-{{\lambda }_{n}}{{M}_{i}}^{n}\right)\\&\Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\Psi =-{\frac {\sum \limits _{i}^{}{}\left(-{{M}_{i}}^{n}\right)\exp \left(-{{\lambda }_{n}}{{M}_{i}}^{n}\right)}{\sum \limits _{i}^{}{}\exp \left(-{{\lambda }_{n}}{{M}_{i}}^{n}\right)}}\\&\sum \limits _{i}^{}{}\exp \left(-{{\lambda }_{n}}{{M}_{i}}^{n}\right)={{e}^{-\Psi }}\\&\Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\Psi =\sum \limits _{i}^{}{}\left({{M}_{i}}^{n}\right)\exp \left(\Psi -{{\lambda }_{n}}{{M}_{i}}^{n}\right)\\&\exp \left(\Psi -{{\lambda }_{n}}{{M}_{i}}^{n}\right)={{P}_{i}}\\&\Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\Psi =\sum \limits _{i}^{}{}\left({{M}_{i}}^{n}\right){{P}_{i}}\\&\Rightarrow {\frac {\partial }{\partial {{\lambda }_{n}}}}\Psi =\left\langle {{M}^{n}}\right\rangle \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.881 KB / 605 B) :

Ψ(λ1,...λm)=lniexp(λnMin)λnΨ=i(Min)exp(λnMin)iexp(λnMin)iexp(λnMin)=eΨλnΨ=i(Min)exp(ΨλnMin)exp(ΨλnMin)=PiλnΨ=i(Min)PiλnΨ=Mn
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi>ln</mi><mo>&#x2061;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Verallgemeinerte kanonische Verteilung page

Identifiers

  • Ψ
  • λ1
  • λm
  • i
  • λn
  • Mi
  • n
  • λn
  • Ψ
  • i
  • Mi
  • n
  • λn
  • Mi
  • n
  • i
  • λn
  • Mi
  • n
  • i
  • λn
  • Mi
  • n
  • e
  • Ψ
  • λn
  • Ψ
  • i
  • Mi
  • n
  • Ψ
  • λn
  • Mi
  • n
  • Ψ
  • λn
  • Mi
  • n
  • Pi
  • λn
  • Ψ
  • i
  • Mi
  • n
  • Pi
  • λn
  • Ψ
  • M
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results