Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.915.18 on revision:915

* Page found: Bilder (eq math.915.18)

(force rerendering)

Occurrences on the following pages:

Hash: e0d042865a1af697b086ec6ecb9ba642

TeX (original user input):

\begin{align}
  & \left\langle {{{\hat{A}}}_{S}} \right\rangle ={}_{t}{{\left\langle \underbrace{\psi |{{{\hat{U}}}_{0}}}_{\left\langle  {{\psi }_{W}} \right|}\underbrace{\hat{U}_{0}^{+}{{{\hat{A}}}_{S}}{{{\hat{U}}}_{0}}}_{{{{\hat{A}}}_{W}}}\hat{U}_{0}^{+}|\psi  \right\rangle }_{t}}={}_{W}{{\left\langle \psi \left| {{{\hat{A}}}_{W}} \right|\psi  \right\rangle }_{W}} \\ 
 & {{d}_{t}}{{\left| \psi  \right\rangle }_{W}}=\frac{i}{\hbar }{{{\hat{H}}}_{0,S}}\hat{U}_{0}^{+}{{\left| \psi  \right\rangle }_{t}}+\hat{U}_{0}^{+}{{\partial }_{t}}{{\left| \psi  \right\rangle }_{t}} \\ 
 & {{\partial }_{t}}{{\left| \psi  \right\rangle }_{t}}=\frac{1}{i\hbar }{{{\hat{H}}}_{0,S}}{{\left| \psi  \right\rangle }_{t}}=\frac{1}{i\hbar }{{{\hat{H}}}_{0,S}}{{{\hat{U}}}_{0}}{{\left| \psi  \right\rangle }_{W}} \\ 
 & \Rightarrow {{d}_{t}}{{\left| \psi  \right\rangle }_{W}}=\frac{1}{\hbar i}\left( -{{{\hat{H}}}_{0,S}}+\underbrace{\hat{U}_{0}^{+}{{{\hat{H}}}_{0,S}}{{{\hat{U}}}_{0}}}_{{{{\hat{H}}}_{W}}={{H}_{0,S}}+{{H}_{1,S}}} \right){{\left| \psi  \right\rangle }_{W}}=\frac{1}{i\hbar }\left( {{{\hat{H}}}_{W}} \right){{\left| \psi  \right\rangle }_{W}} \\ 
 & \Rightarrow i\hbar {{d}_{t}}{{\left| \psi  \right\rangle }_{W}}={{{\hat{H}}}_{1,S}}{{\left| \psi  \right\rangle }_{W}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\left\langle {{\hat {A}}_{S}}\right\rangle ={}_{t}{{\left\langle \underbrace {\psi |{{\hat {U}}_{0}}} _{\left\langle {{\psi }_{W}}\right|}\underbrace {{\hat {U}}_{0}^{+}{{\hat {A}}_{S}}{{\hat {U}}_{0}}} _{{\hat {A}}_{W}}{\hat {U}}_{0}^{+}|\psi \right\rangle }_{t}}={}_{W}{{\left\langle \psi \left|{{\hat {A}}_{W}}\right|\psi \right\rangle }_{W}}\\&{{d}_{t}}{{\left|\psi \right\rangle }_{W}}={\frac {i}{\hbar }}{{\hat {H}}_{0,S}}{\hat {U}}_{0}^{+}{{\left|\psi \right\rangle }_{t}}+{\hat {U}}_{0}^{+}{{\partial }_{t}}{{\left|\psi \right\rangle }_{t}}\\&{{\partial }_{t}}{{\left|\psi \right\rangle }_{t}}={\frac {1}{i\hbar }}{{\hat {H}}_{0,S}}{{\left|\psi \right\rangle }_{t}}={\frac {1}{i\hbar }}{{\hat {H}}_{0,S}}{{\hat {U}}_{0}}{{\left|\psi \right\rangle }_{W}}\\&\Rightarrow {{d}_{t}}{{\left|\psi \right\rangle }_{W}}={\frac {1}{\hbar i}}\left(-{{\hat {H}}_{0,S}}+\underbrace {{\hat {U}}_{0}^{+}{{\hat {H}}_{0,S}}{{\hat {U}}_{0}}} _{{{\hat {H}}_{W}}={{H}_{0,S}}+{{H}_{1,S}}}\right){{\left|\psi \right\rangle }_{W}}={\frac {1}{i\hbar }}\left({{\hat {H}}_{W}}\right){{\left|\psi \right\rangle }_{W}}\\&\Rightarrow i\hbar {{d}_{t}}{{\left|\psi \right\rangle }_{W}}={{\hat {H}}_{1,S}}{{\left|\psi \right\rangle }_{W}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (10.348 KB / 745 B) :

A^S=tψ|U^0ψW|U^0+A^SU^0A^WU^0+|ψt=Wψ|A^W|ψWdt|ψW=iH^0,SU^0+|ψt+U^0+t|ψtt|ψt=1iH^0,S|ψt=1iH^0,SU^0|ψWdt|ψW=1i(H^0,S+U^0+H^0,SU^0H^W=H0,S+H1,S)|ψW=1i(H^W)|ψWidt|ψW=H^1,S|ψW
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><mi>&#x03C8;</mi><mo>|</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>&#x03C8;</mi><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></munder><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><msubsup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msubsup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub></mrow></munder><msubsup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msubsup><mo>|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munder><mo>=</mo><msub><mrow data-mjx-texclass="ORD"/><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03C8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mo>,</mo><mi>S</mi></mrow></mrow></msub><msubsup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msubsup><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msubsup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msubsup><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mo>,</mo><mi>S</mi></mrow></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mo>,</mo><mi>S</mi></mrow></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi><mi>i</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mo>,</mo><mi>S</mi></mrow></mrow></msub><mo>+</mo><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><msubsup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msubsup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mo>,</mo><mi>S</mi></mrow></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>U</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo>=</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mo>,</mo><mi>S</mi></mrow></mrow></msub><mo>+</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>,</mo><mi>S</mi></mrow></mrow></msub></mrow></mrow></munder><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>,</mo><mi>S</mi></mrow></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03C8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Bilder page

Identifiers

  • A^S
  • t
  • ψ
  • U^0
  • ψW
  • U^
  • A^S
  • U^0
  • A^W
  • U^
  • ψ
  • t
  • W
  • ψ
  • A^W
  • ψ
  • W
  • dt
  • ψW
  • i
  • H^0,S
  • U^
  • ψt
  • U^
  • t
  • ψt
  • t
  • ψt
  • i
  • H^0,S
  • ψt
  • i
  • H^0,S
  • U^0
  • ψW
  • dt
  • ψW
  • i
  • H^0,S
  • U^
  • H^0,S
  • U^0
  • H^W
  • H0,S
  • H1,S
  • ψW
  • i
  • H^W
  • ψW
  • i
  • dt
  • ψW
  • H^1,S
  • ψW

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results