Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.860.8 on revision:860

* Page found: Hamiltonsches Prinzip (eq math.860.8)

(force rerendering)

Occurrences on the following pages:

Hash: 8a42d97a6b3127d2b2d25c60f226c0f2

TeX (original user input):

\begin{align}
  & \delta S\left[ q \right]=S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q+\delta q,\dot{q}+\delta \dot{q},t \right)dt} \\ 
 & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \underbrace{L}_{=S\left[ {{q}_{0}} \right]}+{{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt} \\ 
 & =-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt}  
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.958 KB / 525 B) :

δS[q]=S[q0]t1t2L(q+δq,q˙+δq˙,t)dt=S[q0]t1t2(L=S[q0]+qLδq+q˙Lδq˙)dt=t1t2(qLδq+q˙Lδq˙)dt
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03B4;</mi><mi>S</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>q</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mi>S</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>L</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>q</mi><mo>+</mo><mi>&#x03B4;</mi><mi>q</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><mi>t</mi></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>S</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mrow data-mjx-texclass="OP"><munder><mi>L</mi><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>=</mo><mi>S</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mrow></munder><mo>+</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>q</mi></mrow></msub><mi>L</mi><mi>&#x03B4;</mi><mi>q</mi><mo>+</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow></mrow></msub><mi>L</mi><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><mi>t</mi></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>q</mi></mrow></msub><mi>L</mi><mi>&#x03B4;</mi><mi>q</mi><mo>+</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow></mrow></msub><mi>L</mi><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><mi>t</mi></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Hamiltonsches Prinzip page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results