Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.3913.1 on revision:3913

* Page found: Hauptseite (eq math.3913.1)

(force rerendering)

Occurrences on the following pages:

Hash: 11d3fbe4e9c67c22951ab289dae0d02f

TeX (original user input):

\begin{align}
& \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t) \\
& \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi  \right] \\
& \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi  \right] \\
& =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi  \\
& \left[ \left( \bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\
& \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right] \\
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {d}{dt}}{\frac {\partial L({\bar {r}},{\bar {v}},t)}{\partial {{v}_{k}}}}=m{{\ddot {x}}_{k}}+q\left({\frac {\partial }{\partial t}}{{A}_{k}}({\bar {r}},t)+{\frac {\partial {{A}_{k}}({\bar {r}},t)}{\partial {{x}_{l}}}}{\frac {\partial {{x}_{l}}}{\partial t}}\right)=m{{\ddot {x}}_{k}}+q\left({\frac {\partial }{\partial t}}+{\bar {v}}\cdot \nabla \right){{A}_{k}}({\bar {r}},t)\\&{\frac {\partial L({\bar {r}},{\bar {v}},t)}{\partial {{x}_{k}}}}=q\left[{\frac {\partial }{\partial {{x}_{k}}}}\left({\bar {v}}{\bar {A}}\right)-{\frac {\partial }{\partial {{x}_{k}}}}\Phi \right]\\&\Rightarrow 0={\frac {d}{dt}}{\frac {\partial L({\bar {r}},{\bar {v}},t)}{\partial {{v}_{k}}}}-{\frac {\partial L({\bar {r}},{\bar {v}},t)}{\partial {{x}_{k}}}}=m{{\ddot {x}}_{k}}+q\left({\frac {\partial }{\partial t}}+{\bar {v}}\cdot \nabla \right){{A}_{k}}({\bar {r}},t)-q\left[{\frac {\partial }{\partial {{x}_{k}}}}\left({\bar {v}}{\bar {A}}\right)-{\frac {\partial }{\partial {{x}_{k}}}}\Phi \right]\\&=m{{\ddot {x}}_{k}}+q{\frac {\partial }{\partial t}}{{A}_{k}}({\bar {r}},t)+q\left[\left({\bar {v}}\cdot \nabla \right){{A}_{k}}({\bar {r}},t)-{\frac {\partial }{\partial {{x}_{k}}}}\left({\bar {v}}{\bar {A}}\right)\right]+q{\frac {\partial }{\partial {{x}_{k}}}}\Phi \\&\left[\left({\bar {v}}\cdot \nabla \right){{A}_{k}}({\bar {r}},t)-{\frac {\partial }{\partial {{x}_{k}}}}\left({\bar {v}}{\bar {A}}\right)\right]=-{{\left[{\bar {v}}\times \left(\nabla \times {\bar {A}}\right)\right]}_{k}}\\&\Rightarrow 0=m{\ddot {\bar {r}}}+q{\frac {\partial }{\partial t}}A({\bar {r}},t)-q\left[{\bar {v}}\times \left(\nabla \times {\bar {A}}\right)\right]+q\nabla \Phi =m{\ddot {\bar {r}}}+q\left[{\frac {\partial }{\partial t}}A({\bar {r}},t)+\nabla \Phi -\left[{\bar {v}}\times \left(\nabla \times {\bar {A}}\right)\right]\right]\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (15.648 KB / 801 B) :

ddtL(r¯,v¯,t)vk=mx¨k+q(tAk(r¯,t)+Ak(r¯,t)xlxlt)=mx¨k+q(t+v¯)Ak(r¯,t)L(r¯,v¯,t)xk=q[xk(v¯A¯)xkΦ]0=ddtL(r¯,v¯,t)vkL(r¯,v¯,t)xk=mx¨k+q(t+v¯)Ak(r¯,t)q[xk(v¯A¯)xkΦ]=mx¨k+qtAk(r¯,t)+q[(v¯)Ak(r¯,t)xk(v¯A¯)]+qxkΦ[(v¯)Ak(r¯,t)xk(v¯A¯)]=[v¯×(×A¯)]k0=mr¯¨+qtA(r¯,t)q[v¯×(×A¯)]+qΦ=mr¯¨+q[tA(r¯,t)+Φ[v¯×(×A¯)]]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mi>m</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>m</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mi mathvariant="normal">&#x2207;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mn>0</mn><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mi>m</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mi mathvariant="normal">&#x2207;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>m</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mi>q</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mi mathvariant="normal">&#x2207;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>+</mo><mi>q</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A6;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mi mathvariant="normal">&#x2207;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mn>0</mn><mo>=</mo><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mo>+</mo><mi>q</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi>A</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>+</mo><mi>q</mi><mi mathvariant="normal">&#x2207;</mi><mi mathvariant="normal">&#x03A6;</mi><mo>=</mo><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mo>+</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi>A</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mi mathvariant="normal">&#x2207;</mi><mi mathvariant="normal">&#x03A6;</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Hauptseite page

Identifiers

  • d
  • d
  • t
  • L
  • r¯
  • v¯
  • t
  • vk
  • m
  • x¨k
  • q
  • t
  • Ak
  • r¯
  • t
  • Ak
  • r¯
  • t
  • xl
  • xl
  • t
  • m
  • x¨k
  • q
  • t
  • v¯
  • Ak
  • r¯
  • t
  • L
  • r¯
  • v¯
  • t
  • xk
  • q
  • xk
  • v¯
  • A¯
  • xk
  • Φ
  • d
  • d
  • t
  • L
  • r¯
  • v¯
  • t
  • vk
  • L
  • r¯
  • v¯
  • t
  • xk
  • m
  • x¨k
  • q
  • t
  • v¯
  • Ak
  • r¯
  • t
  • q
  • xk
  • v¯
  • A¯
  • xk
  • Φ
  • m
  • x¨k
  • q
  • t
  • Ak
  • r¯
  • t
  • q
  • v¯
  • Ak
  • r¯
  • t
  • xk
  • v¯
  • A¯
  • q
  • xk
  • Φ
  • v¯
  • Ak
  • r¯
  • t
  • xk
  • v¯
  • A¯
  • v¯
  • A¯
  • k
  • m
  • r¯¨
  • q
  • t
  • A
  • r¯
  • t
  • q
  • v¯
  • A¯
  • q
  • Φ
  • m
  • r¯¨
  • q
  • t
  • A
  • r¯
  • t
  • Φ
  • v¯
  • A¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results