Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.349.5 on revision:349

* Page found: Liouville-von-Neumann-Gleichung (eq math.349.5)

(force rerendering)

Occurrences on the following pages:

Hash: 4b3c16f9532daa71144214e2be27557e

TeX (original user input):

\begin{align}
  & \left\langle  \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right|=\left\langle  \hat{H}\Psi \left( t \right) \right| \\
 & \text{-}\mathfrak{i}{{\partial }_{t}}\left\langle  \Psi \left( t \right) \right|=\left\langle  \Psi \left( t \right) \right|\hat{H},\,\left( \hat{H}={{{\hat{H}}}^{+}} \right)\Rightarrow {{\partial }_{t}}\left\langle  \Psi \left( t \right) \right|=\mathfrak{i}\left\langle  \Psi \left( t \right) \right|\hat{H} \\
\end{align}

TeX (checked):

{\begin{aligned}&\left\langle {\mathfrak {i}}{{\partial }_{t}}\Psi \left(t\right)\right|=\left\langle {\hat {H}}\Psi \left(t\right)\right|\\&{\text{-}}{\mathfrak {i}}{{\partial }_{t}}\left\langle \Psi \left(t\right)\right|=\left\langle \Psi \left(t\right)\right|{\hat {H}},\,\left({\hat {H}}={{\hat {H}}^{+}}\right)\Rightarrow {{\partial }_{t}}\left\langle \Psi \left(t\right)\right|={\mathfrak {i}}\left\langle \Psi \left(t\right)\right|{\hat {H}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.474 KB / 476 B) :

itΨ(t)|=H^Ψ(t)|-itΨ(t)|=Ψ(t)|H^,(H^=H^+)tΨ(t)|=iΨ(t)|H^
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtext>-</mtext></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mspace width="0.167em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>=</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D2;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Liouville-von-Neumann-Gleichung page

Identifiers

  • i
  • t
  • Ψ
  • t
  • H^
  • Ψ
  • t
  • i
  • t
  • Ψ
  • t
  • Ψ
  • t
  • H^
  • H^
  • H^
  • t
  • Ψ
  • t
  • i
  • Ψ
  • t
  • H^

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results