Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.3487.18 on revision:3487

* Page found: Gamma-Zerfall (eq math.3487.18)

(force rerendering)

Occurrences on the following pages:

Hash: 2b68673537bfa6a677e9a31302722497

TeX (original user input):

A=\frac{d\bar{E}}{dt}/\hbar \omega =\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{1}{3}\frac{1}{\hbar }{{\left( \frac{\omega }{c} \right)}^{3}}{{\left( e{{r}_{0}} \right)}^{2}}=\underbrace{\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{{{e}^{2}}}{\hbar }}_{\alpha =\frac{1}{137}}\omega {{\left( \frac{\omega {{r}_{0}}}{c} \right)}^{2}}

TeX (checked):

A={\frac {d{\bar {E}}}{dt}}/\hbar \omega ={\frac {1}{4\pi {{\varepsilon }_{0}}}}{\frac {1}{3}}{\frac {1}{\hbar }}{{\left({\frac {\omega }{c}}\right)}^{3}}{{\left(e{{r}_{0}}\right)}^{2}}=\underbrace {{\frac {1}{4\pi {{\varepsilon }_{0}}}}{\frac {{e}^{2}}{\hbar }}} _{\alpha ={\frac {1}{137}}}\omega {{\left({\frac {\omega {{r}_{0}}}{c}}\right)}^{2}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.104 KB / 459 B) :

A=dE¯dt/ω=14πε0131(ωc)3(er0)2=14πε0e2α=1137ω(ωr0c)2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>A</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>/</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>e</mi><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>3</mn><mn>7</mn></mrow></mrow></mfrac></mrow></mrow></mrow></munder><mi>&#x03C9;</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Gamma-Zerfall page

Identifiers

  • A
  • d
  • E¯
  • d
  • t
  • ω
  • π
  • ε0
  • ω
  • c
  • e
  • r0
  • π
  • ε0
  • e
  • α
  • ω
  • ω
  • r0
  • c

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results