Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2719.16 on revision:2719

* Page found: Fermis Goldene Regel (eq math.2719.16)

(force rerendering)

Occurrences on the following pages:

Hash: dd7539e67f08c89d79c8490b313a59de

TeX (original user input):

\begin{align}
  & {{\left| \Psi \left( t \right) \right\rangle }_{I}}=\left| i \right\rangle -\text{i}\int\limits_{0}^{t}{dt'\,{{V}_{I}}\left( t' \right)}\left| i \right\rangle +O{{\left( {{V}_{I}} \right)}^{2}} \\ 
 & {{\left\langle  f | \Psi \left( t \right) \right\rangle }_{I}}={{\delta }_{i,f}}-\text{i}\int\limits_{0}^{t}{dt'\,\left\langle  f \right|{{V}_{I}}\left( t' \right)}\left| i \right\rangle +O{{\left( {{V}_{I}} \right)}^{2}}  
\end{align}

TeX (checked):

{\begin{aligned}&{{\left|\Psi \left(t\right)\right\rangle }_{I}}=\left|i\right\rangle -{\text{i}}\int \limits _{0}^{t}{dt'\,{{V}_{I}}\left(t'\right)}\left|i\right\rangle +O{{\left({{V}_{I}}\right)}^{2}}\\&{{\left\langle f|\Psi \left(t\right)\right\rangle }_{I}}={{\delta }_{i,f}}-{\text{i}}\int \limits _{0}^{t}{dt'\,\left\langle f\right|{{V}_{I}}\left(t'\right)}\left|i\right\rangle +O{{\left({{V}_{I}}\right)}^{2}}\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.413 KB / 542 B) :

|Ψ(t)I=|ii0tdtVI(t)|i+O(VI)2f|Ψ(t)I=δi,fi0tdtf|VI(t)|i+O(VI)2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>I</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>i</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mtext>i</mtext></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>t</mi><mo>&#x2032;</mo></msup><mspace width="0.167em"></mspace><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>I</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>i</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>O</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>I</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>f</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>I</mi></mrow></msub><mo>=</mo><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>f</mi></mrow></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mtext>i</mtext></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>t</mi><mo>&#x2032;</mo></msup><mspace width="0.167em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>f</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>I</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>i</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>O</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>I</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Fermis Goldene Regel page

Identifiers

  • Ψ
  • t
  • I
  • i
  • t
  • t
  • VI
  • t
  • i
  • O
  • VI
  • f
  • Ψ
  • t
  • I
  • δi,f
  • t
  • t
  • f
  • VI
  • t
  • i
  • O
  • VI

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results