Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2693.25 on revision:2693

* Page found: Lösungen der Dirac-Gleichung (freies Teilchen) (eq math.2693.25)

(force rerendering)

Occurrences on the following pages:

Hash: 8980d54955c2c30cb4eae15f2116ad97

TeX (original user input):

\begin{align}

& {{\phi }_{+}}^{\left( 1 \right)}=N\left( \begin{align}

& \left( E+m \right){{{\underline{u}}}^{\left( 1 \right)}} \\

& \left( \underline{k}.\underline{\sigma } \right){{{\underline{u}}}^{\left( 1 \right)}} \\

\end{align} \right)\quad {{\phi }_{+}}^{\left( 2 \right)}=N\left( \begin{align}

& \left( E+m \right){{{\underline{u}}}^{\left( 2 \right)}} \\

& \left( \underline{k}.\underline{\sigma } \right){{{\underline{u}}}^{\left( 2 \right)}} \\

\end{align} \right) \\

& {{\phi }_{-}}^{\left( 1 \right)}=N\left( \begin{align}

& \left( \underline{k}.\underline{\sigma } \right){{{\underline{u}}}^{\left( 1 \right)}} \\

& \left( E+m \right){{{\underline{u}}}^{\left( 1 \right)}} \\

\end{align} \right)\quad {{\phi }_{-}}^{\left( 2 \right)}=N\left( \begin{align}

& \left( \underline{k}.\underline{\sigma } \right){{{\underline{u}}}^{\left( 2 \right)}} \\

& \left( E+m \right){{{\underline{u}}}^{\left( 2 \right)}} \\

\end{align} \right) \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\phi }_{+}}^{\left(1\right)}=N\left({\begin{aligned}&\left(E+m\right){{\underline {u}}^{\left(1\right)}}\\&\left({\underline {k}}.{\underline {\sigma }}\right){{\underline {u}}^{\left(1\right)}}\\\end{aligned}}\right)\quad {{\phi }_{+}}^{\left(2\right)}=N\left({\begin{aligned}&\left(E+m\right){{\underline {u}}^{\left(2\right)}}\\&\left({\underline {k}}.{\underline {\sigma }}\right){{\underline {u}}^{\left(2\right)}}\\\end{aligned}}\right)\\&{{\phi }_{-}}^{\left(1\right)}=N\left({\begin{aligned}&\left({\underline {k}}.{\underline {\sigma }}\right){{\underline {u}}^{\left(1\right)}}\\&\left(E+m\right){{\underline {u}}^{\left(1\right)}}\\\end{aligned}}\right)\quad {{\phi }_{-}}^{\left(2\right)}=N\left({\begin{aligned}&\left({\underline {k}}.{\underline {\sigma }}\right){{\underline {u}}^{\left(2\right)}}\\&\left(E+m\right){{\underline {u}}^{\left(2\right)}}\\\end{aligned}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.795 KB / 483 B) :

ϕ+(1)=N((E+m)u_(1)(k_.σ_)u_(1))ϕ+(2)=N((E+m)u_(2)(k_.σ_)u_(2))ϕ(1)=N((k_.σ_)u_(1)(E+m)u_(1))ϕ(2)=N((k_.σ_)u_(2)(E+m)u_(2))
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo>=</mo><mi>N</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="ORD"><munder><mi>u</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="ORD"><munder><mi>u</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo>=</mo><mi>N</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="ORD"><munder><mi>u</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="ORD"><munder><mi>u</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo>=</mo><mi>N</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="ORD"><munder><mi>u</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="ORD"><munder><mi>u</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo>=</mo><mi>N</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="ORD"><munder><mi>u</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="ORD"><munder><mi>u</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Lösungen der Dirac-Gleichung (freies Teilchen) page

Identifiers

  • ϕ+
  • N
  • E
  • m
  • u_
  • k_
  • σ_
  • u_
  • ϕ+
  • N
  • E
  • m
  • u_
  • k_
  • σ_
  • u_
  • ϕ
  • N
  • k_
  • σ_
  • u_
  • E
  • m
  • u_
  • ϕ
  • N
  • k_
  • σ_
  • u_
  • E
  • m
  • u_

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results