Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2693.24 on revision:2693

* Page found: Lösungen der Dirac-Gleichung (freies Teilchen) (eq math.2693.24)

(force rerendering)

Occurrences on the following pages:

Hash: 3435f6cbe4c73280992d41d82e709c97

TeX (original user input):

\begin{align}

& -{{{\tilde{\phi }}}_{-}}=-\left( E+m \right)\left( \begin{align}

& {{u}_{1}} \\

& {{u}_{2}} \\

& 0 \\

& 0 \\

\end{align} \right)-{{k}_{x}}\left( \begin{matrix}

0 & {{\sigma }_{x}}  \\

-{{\sigma }_{x}} & 0  \\

\end{matrix} \right)\left( \begin{align}

& {{u}_{1}} \\

& {{u}_{2}} \\

& 0 \\

& 0 \\

\end{align} \right)-{{k}_{y}}... \\

& =-\left( \begin{align}

& \underline{k}.\underline{\sigma }\left( \begin{align}

& {{u}_{1}} \\

& {{u}_{2}} \\

\end{align} \right) \\

& \left( E+m \right)\left( \begin{align}

& {{u}_{1}} \\

& {{u}_{2}} \\

\end{align} \right) \\

\end{align} \right)

\end{align}

TeX (checked):

{\begin{aligned}&-{{\tilde {\phi }}_{-}}=-\left(E+m\right)\left({\begin{aligned}&{{u}_{1}}\\&{{u}_{2}}\\&0\\&0\\\end{aligned}}\right)-{{k}_{x}}\left({\begin{matrix}0&{{\sigma }_{x}}\\-{{\sigma }_{x}}&0\\\end{matrix}}\right)\left({\begin{aligned}&{{u}_{1}}\\&{{u}_{2}}\\&0\\&0\\\end{aligned}}\right)-{{k}_{y}}...\\&=-\left({\begin{aligned}&{\underline {k}}.{\underline {\sigma }}\left({\begin{aligned}&{{u}_{1}}\\&{{u}_{2}}\\\end{aligned}}\right)\\&\left(E+m\right)\left({\begin{aligned}&{{u}_{1}}\\&{{u}_{2}}\\\end{aligned}}\right)\\\end{aligned}}\right)\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.617 KB / 495 B) :

ϕ~=(E+m)(u1u200)kx(0σxσx0)(u1u200)ky...=(k_.σ_(u1u2)(E+m)(u1u2))
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><msub><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Lösungen der Dirac-Gleichung (freies Teilchen) page

Identifiers

  • ϕ~
  • E
  • m
  • u1
  • u2
  • kx
  • σx
  • σx
  • u1
  • u2
  • ky
  • k_
  • σ_
  • u1
  • u2
  • E
  • m
  • u1
  • u2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results