Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2693.24 on revision:2693
* Page found: Lösungen der Dirac-Gleichung (freies Teilchen) (eq math.2693.24)
(force rerendering)Occurrences on the following pages:
Hash: 3435f6cbe4c73280992d41d82e709c97
TeX (original user input):
\begin{align}
& -{{{\tilde{\phi }}}_{-}}=-\left( E+m \right)\left( \begin{align}
& {{u}_{1}} \\
& {{u}_{2}} \\
& 0 \\
& 0 \\
\end{align} \right)-{{k}_{x}}\left( \begin{matrix}
0 & {{\sigma }_{x}} \\
-{{\sigma }_{x}} & 0 \\
\end{matrix} \right)\left( \begin{align}
& {{u}_{1}} \\
& {{u}_{2}} \\
& 0 \\
& 0 \\
\end{align} \right)-{{k}_{y}}... \\
& =-\left( \begin{align}
& \underline{k}.\underline{\sigma }\left( \begin{align}
& {{u}_{1}} \\
& {{u}_{2}} \\
\end{align} \right) \\
& \left( E+m \right)\left( \begin{align}
& {{u}_{1}} \\
& {{u}_{2}} \\
\end{align} \right) \\
\end{align} \right)
\end{align}
TeX (checked):
{\begin{aligned}&-{{\tilde {\phi }}_{-}}=-\left(E+m\right)\left({\begin{aligned}&{{u}_{1}}\\&{{u}_{2}}\\&0\\&0\\\end{aligned}}\right)-{{k}_{x}}\left({\begin{matrix}0&{{\sigma }_{x}}\\-{{\sigma }_{x}}&0\\\end{matrix}}\right)\left({\begin{aligned}&{{u}_{1}}\\&{{u}_{2}}\\&0\\&0\\\end{aligned}}\right)-{{k}_{y}}...\\&=-\left({\begin{aligned}&{\underline {k}}.{\underline {\sigma }}\left({\begin{aligned}&{{u}_{1}}\\&{{u}_{2}}\\\end{aligned}}\right)\\&\left(E+m\right)\left({\begin{aligned}&{{u}_{1}}\\&{{u}_{2}}\\\end{aligned}}\right)\\\end{aligned}}\right)\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.617 KB / 495 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>−</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>ϕ</mi><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>−</mo></mrow></msub><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><msub><mi>σ</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>−</mo><msub><mi>σ</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><munder><mi>k</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>σ</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Lösungen der Dirac-Gleichung (freies Teilchen) page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results