Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2669.27 on revision:2669

* Page found: Die Dirac Gleichung (eq math.2669.27)

(force rerendering)

Occurrences on the following pages:

Hash: 9cccffce4971b9336a3a2f701dacd292

TeX (original user input):

M=\underline{p}.\underline{\sigma }={{p}_{1}}{{\underline{\underline{\sigma }}}_{1}}+{{p}_{2}}{{\underline{\underline{\sigma }}}_{2}}+{{p}_{2}}{{\underline{\underline{\sigma }}}_{2}},\quad \underline{\sigma }=\underbrace{\left( {{{\underline{\underline{\sigma }}}}_{1}},{{{\underline{\underline{\sigma }}}}_{2}},{{{\underline{\underline{\sigma }}}}_{3}} \right)}_{\text{Vektor der Pauli-Matrizen}}\quad ,\underline{p}=\underbrace{\left( {{p}_{1}},{{p}_{2}},{{p}_{3}} \right)}_{\in {{\mathbb{R}}^{3}}}

TeX (checked):

M={\underline {p}}.{\underline {\sigma }}={{p}_{1}}{{\underline {\underline {\sigma }}}_{1}}+{{p}_{2}}{{\underline {\underline {\sigma }}}_{2}}+{{p}_{2}}{{\underline {\underline {\sigma }}}_{2}},\quad {\underline {\sigma }}=\underbrace {\left({{\underline {\underline {\sigma }}}_{1}},{{\underline {\underline {\sigma }}}_{2}},{{\underline {\underline {\sigma }}}_{3}}\right)} _{\text{Vektor der Pauli-Matrizen}}\quad ,{\underline {p}}=\underbrace {\left({{p}_{1}},{{p}_{2}},{{p}_{3}}\right)} _{\in {{\mathbb {R} }^{3}}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.998 KB / 436 B) :

M=p_.σ_=p1σ__1+p2σ__2+p2σ__2,σ_=(σ__1,σ__2,σ__3)Vektor der Pauli-Matrizen,p_=(p1,p2,p3)3
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>M</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><munder><mi>p</mi><mo>_</mo></munder></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>=</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>+</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>,</mo><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>=</mo><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>Vektor der Pauli-Matrizen</mtext></mrow></mrow></munder><mspace width="1em"></mspace><mo>,</mo><mrow data-mjx-texclass="ORD"><munder><mi>p</mi><mo>_</mo></munder></mrow><mo>=</mo><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>,</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2208;</mo><msup><mrow data-mjx-texclass="ORD"><mi mathvariant="double-struck">&#x211D;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></munder></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Die Dirac Gleichung page

Identifiers

  • M
  • p_
  • σ_
  • p1
  • σ__1
  • p2
  • σ__2
  • p2
  • σ__2
  • σ_
  • σ__1
  • σ__2
  • σ__3
  • p_
  • p1
  • p2
  • p3

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results