Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2577.9 on revision:2577

* Page found: Spezifische Wärme von Festkörpern (eq math.2577.9)

(force rerendering)

Occurrences on the following pages:

Hash: 6d114a6fb0ff594a1304a41165d960ac

TeX (original user input):

\begin{align}

& \sum\limits_{{\bar{q}}}^{{}}{{}}->\frac{V}{{{h}^{3}}}\int_{{}}^{{}}{{}}{{d}^{3}}\left( \hbar \bar{q} \right)=\frac{4\pi V}{{{\left( 2\pi  \right)}^{3}}}\int_{0}^{{{q}_{D}}}{{}}dq{{q}^{2}}=\frac{4\pi V}{{{\left( 2\pi  \right)}^{3}}}\left( \frac{1}{{{v}_{L}}^{3}}+\frac{2}{{{v}_{T}}^{3}} \right)\int_{0}^{{{\omega }_{D}}}{{}}d\omega {{\omega }^{2}} \\

& \left( \frac{1}{{{v}_{L}}^{3}}+\frac{2}{{{v}_{T}}^{3}} \right)\tilde{\ }\frac{3}{{{{\bar{v}}}^{3}}} \\

& \Rightarrow 3N=!=\frac{4\pi V}{{{\left( 2\pi  \right)}^{3}}}\left( \frac{1}{{{v}_{L}}^{3}}+\frac{2}{{{v}_{T}}^{3}} \right)\int_{0}^{{{\omega }_{D}}}{{}}d\omega {{\omega }^{2}}=\frac{4\pi V}{{{\left( 2\pi  \right)}^{3}}}\frac{3}{{{{\bar{v}}}^{3}}}\int_{0}^{{{\omega }_{D}}}{{}}d\omega {{\omega }^{2}}=\frac{4\pi V}{{{\left( 2\pi  \right)}^{3}}}\frac{{{\omega }_{D}}^{3}}{{{{\bar{v}}}^{3}}} \\

\end{align}

TeX (checked):

{\begin{aligned}&\sum \limits _{\bar {q}}^{}{}->{\frac {V}{{h}^{3}}}\int _{}^{}{}{{d}^{3}}\left(\hbar {\bar {q}}\right)={\frac {4\pi V}{{\left(2\pi \right)}^{3}}}\int _{0}^{{q}_{D}}{}dq{{q}^{2}}={\frac {4\pi V}{{\left(2\pi \right)}^{3}}}\left({\frac {1}{{{v}_{L}}^{3}}}+{\frac {2}{{{v}_{T}}^{3}}}\right)\int _{0}^{{\omega }_{D}}{}d\omega {{\omega }^{2}}\\&\left({\frac {1}{{{v}_{L}}^{3}}}+{\frac {2}{{{v}_{T}}^{3}}}\right){\tilde {\ }}{\frac {3}{{\bar {v}}^{3}}}\\&\Rightarrow 3N=!={\frac {4\pi V}{{\left(2\pi \right)}^{3}}}\left({\frac {1}{{{v}_{L}}^{3}}}+{\frac {2}{{{v}_{T}}^{3}}}\right)\int _{0}^{{\omega }_{D}}{}d\omega {{\omega }^{2}}={\frac {4\pi V}{{\left(2\pi \right)}^{3}}}{\frac {3}{{\bar {v}}^{3}}}\int _{0}^{{\omega }_{D}}{}d\omega {{\omega }^{2}}={\frac {4\pi V}{{\left(2\pi \right)}^{3}}}{\frac {{{\omega }_{D}}^{3}}{{\bar {v}}^{3}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (8.023 KB / 694 B) :

q¯>Vh3d3(q¯)=4πV(2π)30qDdqq2=4πV(2π)3(1vL3+2vT3)0ωDdωω2(1vL3+2vT3)~3v¯33N=!=4πV(2π)3(1vL3+2vT3)0ωDdωω2=4πV(2π)33v¯30ωDdωω2=4πV(2π)3ωD3v¯3
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mo>&#x2212;</mo><mo>&gt;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub></mrow></munderover></mstyle><mi>d</mi><mi>q</mi><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>L</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>L</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mn>3</mn><mi>N</mi><mo>=</mo><mi>!</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>L</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C9;</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Spezifische Wärme von Festkörpern page

Identifiers

  • q¯
  • V
  • h
  • q¯
  • π
  • V
  • π
  • qD
  • q
  • q
  • π
  • V
  • π
  • vL
  • vT
  • ωD
  • ω
  • ω
  • vL
  • vT
  • ~
  • v¯
  • N
  • π
  • V
  • π
  • vL
  • vT
  • ωD
  • ω
  • ω
  • π
  • V
  • π
  • v¯
  • ωD
  • ω
  • ω
  • π
  • V
  • π
  • ωD
  • v¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results