Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2577.18 on revision:2577
* Page found: Spezifische Wärme von Festkörpern (eq math.2577.18)
(force rerendering)Occurrences on the following pages:
Hash: 24cfe4846e59c4c7f08ed42ebc144357
TeX (original user input):
\begin{align}
& T<<{{\Theta }_{D}} \\
& \xi >>1 \\
& \Rightarrow \Psi \left( \xi \right):=\frac{1}{{{\xi }^{3}}}\int_{0}^{\xi }{{}}dx\frac{{{x}^{3}}}{{{e}^{x}}-1}\approx \frac{1}{{{\xi }^{3}}}\int_{0}^{\infty }{{}}dx\frac{{{x}^{3}}}{{{e}^{x}}-1}=\frac{1}{{{\xi }^{3}}}\frac{{{\pi }^{4}}}{15} \\
& U=9\frac{{{\pi }^{4}}}{15}NkT{{\left( \frac{T}{{{\Theta }_{D}}} \right)}^{3}} \\
& \Rightarrow {{C}_{V}}=\frac{\partial U}{\partial T}=\frac{36}{15}{{\pi }^{4}}Nk{{\left( \frac{T}{{{\Theta }_{D}}} \right)}^{3}} \\
& {{c}_{v}}=\frac{12}{5}{{\pi }^{4}}R{{\left( \frac{T}{{{\Theta }_{D}}} \right)}^{3}} \\
\end{align}
TeX (checked):
{\begin{aligned}&T<<{{\Theta }_{D}}\\&\xi >>1\\&\Rightarrow \Psi \left(\xi \right):={\frac {1}{{\xi }^{3}}}\int _{0}^{\xi }{}dx{\frac {{x}^{3}}{{{e}^{x}}-1}}\approx {\frac {1}{{\xi }^{3}}}\int _{0}^{\infty }{}dx{\frac {{x}^{3}}{{{e}^{x}}-1}}={\frac {1}{{\xi }^{3}}}{\frac {{\pi }^{4}}{15}}\\&U=9{\frac {{\pi }^{4}}{15}}NkT{{\left({\frac {T}{{\Theta }_{D}}}\right)}^{3}}\\&\Rightarrow {{C}_{V}}={\frac {\partial U}{\partial T}}={\frac {36}{15}}{{\pi }^{4}}Nk{{\left({\frac {T}{{\Theta }_{D}}}\right)}^{3}}\\&{{c}_{v}}={\frac {12}{5}}{{\pi }^{4}}R{{\left({\frac {T}{{\Theta }_{D}}}\right)}^{3}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.535 KB / 654 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>T</mi><mo><</mo><mo><</mo><msub><mi mathvariant="normal">Θ</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>ξ</mi><mo>></mo><mo>></mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>ξ</mi></mrow></munderover></mstyle><mi>d</mi><mi>x</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>x</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>π</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>5</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>U</mi><mo>=</mo><mn>9</mn><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>π</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>5</mn></mrow></mrow></mfrac></mrow><mi>N</mi><mi>k</mi><mi>T</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">Θ</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>U</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mn>6</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>5</mn></mrow></mrow></mfrac></mrow><msup><mi>π</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup><mi>N</mi><mi>k</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">Θ</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>2</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>5</mn></mrow></mfrac></mrow><msup><mi>π</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup><mi>R</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">Θ</mi><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></msub></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Spezifische Wärme von Festkörpern page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results