Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2573.40 on revision:2573

* Page found: Spezifische Wärme zweiatomiger idealer Gase (eq math.2573.40)

(force rerendering)

Occurrences on the following pages:

Hash: ff64cd5f585ec5f1f71085616943005b

TeX (original user input):

\begin{align}

& {{Z}_{S}}=\sum\limits_{n=0}^{\infty }{{}}\exp \left( -\beta \left( \hbar \omega \left( n+\frac{1}{2} \right) \right) \right)=\exp \left( -\beta \hbar \omega \frac{1}{2} \right)\sum\limits_{n=0}^{\infty }{{}}{{\left[ \exp \left( -\beta \hbar \omega  \right) \right]}^{n}} \\

& =\exp \left( -\beta \hbar \omega \frac{1}{2} \right)\frac{1}{1-\left[ \exp \left( -\beta \hbar \omega  \right) \right]} \\

& {{U}_{S}}=-N\frac{\partial }{\partial \beta }\ln {{Z}_{S}}=N\left( \frac{1}{\left[ \exp \left( \beta \hbar \omega  \right)-1 \right]}+\frac{1}{2} \right)\hbar \omega =N\left( \left\langle n \right\rangle +\frac{1}{2} \right)\hbar \omega  \\

& {{c}_{Vs}}={{N}_{A}}\frac{\partial }{\partial T}\left( \frac{1}{\left[ \exp \left( \frac{\hbar \omega }{kT} \right)-1 \right]}+\frac{1}{2} \right)\hbar \omega ={{N}_{A}}k\frac{{{\left( \frac{{{\Theta }_{S}}}{T} \right)}^{2}}{{e}^{\left( \frac{{{\Theta }_{S}}}{T} \right)}}}{{{\left( {{e}^{\left( \frac{{{\Theta }_{S}}}{T} \right)}}-1 \right)}^{2}}} \\

& {{\Theta }_{S}}:=\frac{\hbar \omega }{k} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{Z}_{S}}=\sum \limits _{n=0}^{\infty }{}\exp \left(-\beta \left(\hbar \omega \left(n+{\frac {1}{2}}\right)\right)\right)=\exp \left(-\beta \hbar \omega {\frac {1}{2}}\right)\sum \limits _{n=0}^{\infty }{}{{\left[\exp \left(-\beta \hbar \omega \right)\right]}^{n}}\\&=\exp \left(-\beta \hbar \omega {\frac {1}{2}}\right){\frac {1}{1-\left[\exp \left(-\beta \hbar \omega \right)\right]}}\\&{{U}_{S}}=-N{\frac {\partial }{\partial \beta }}\ln {{Z}_{S}}=N\left({\frac {1}{\left[\exp \left(\beta \hbar \omega \right)-1\right]}}+{\frac {1}{2}}\right)\hbar \omega =N\left(\left\langle n\right\rangle +{\frac {1}{2}}\right)\hbar \omega \\&{{c}_{Vs}}={{N}_{A}}{\frac {\partial }{\partial T}}\left({\frac {1}{\left[\exp \left({\frac {\hbar \omega }{kT}}\right)-1\right]}}+{\frac {1}{2}}\right)\hbar \omega ={{N}_{A}}k{\frac {{{\left({\frac {{\Theta }_{S}}{T}}\right)}^{2}}{{e}^{\left({\frac {{\Theta }_{S}}{T}}\right)}}}{{\left({{e}^{\left({\frac {{\Theta }_{S}}{T}}\right)}}-1\right)}^{2}}}\\&{{\Theta }_{S}}:={\frac {\hbar \omega }{k}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (8.443 KB / 768 B) :

ZS=n=0exp(β(ω(n+12)))=exp(βω12)n=0[exp(βω)]n=exp(βω12)11[exp(βω)]US=NβlnZS=N(1[exp(βω)1]+12)ω=N(n+12)ωcVs=NAT(1[exp(ωkT)1]+12)ω=NAk(ΘST)2e(ΘST)(e(ΘST)1)2ΘS:=ωk
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>Z</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>n</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mi>N</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B2;</mi></mrow></mrow></mfrac></mrow><mi>ln</mi><mo>&#x2061;</mo><msub><mi>Z</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>=</mo><mi>N</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B2;</mi><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo>=</mo><mi>N</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>V</mi><mi>s</mi></mrow></mrow></msub><mo>=</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo>=</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x0398;</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x0398;</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x0398;</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x0398;</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Spezifische Wärme zweiatomiger idealer Gase page

Identifiers

  • ZS
  • n
  • β
  • ω
  • n
  • β
  • ω
  • n
  • β
  • ω
  • n
  • β
  • ω
  • β
  • ω
  • US
  • N
  • β
  • ZS
  • N
  • β
  • ω
  • ω
  • N
  • n
  • ω
  • cVs
  • NA
  • T
  • ω
  • k
  • T
  • ω
  • NA
  • k
  • ΘS
  • T
  • e
  • ΘS
  • T
  • e
  • ΘS
  • T
  • ΘS
  • ω
  • k

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results