Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2573.14 on revision:2573

* Page found: Spezifische Wärme zweiatomiger idealer Gase (eq math.2573.14)

(force rerendering)

Occurrences on the following pages:

Hash: ec60dedc79827675a7d344ff68f35bba

TeX (original user input):

\begin{align}

& U=-\frac{\partial }{\partial \beta }\ln Z=-\frac{\partial }{\partial \beta }\left( \frac{1}{N!}{{Z}_{t}}^{N} \right)-N\frac{\partial }{\partial \beta }\left( {{Z}_{r}} \right)-N\frac{\partial }{\partial \beta }\left( {{Z}_{s}} \right) \\

& -\frac{\partial }{\partial \beta }\left( \frac{1}{N!}{{Z}_{t}}^{N} \right)={{U}_{t}} \\

& -N\frac{\partial }{\partial \beta }\left( {{Z}_{r}} \right)={{U}_{r}} \\

& -N\frac{\partial }{\partial \beta }\left( {{Z}_{s}} \right)={{U}_{S}} \\

& \Rightarrow U={{U}_{t}}+{{U}_{r}}+{{U}_{S}} \\

\end{align}

TeX (checked):

{\begin{aligned}&U=-{\frac {\partial }{\partial \beta }}\ln Z=-{\frac {\partial }{\partial \beta }}\left({\frac {1}{N!}}{{Z}_{t}}^{N}\right)-N{\frac {\partial }{\partial \beta }}\left({{Z}_{r}}\right)-N{\frac {\partial }{\partial \beta }}\left({{Z}_{s}}\right)\\&-{\frac {\partial }{\partial \beta }}\left({\frac {1}{N!}}{{Z}_{t}}^{N}\right)={{U}_{t}}\\&-N{\frac {\partial }{\partial \beta }}\left({{Z}_{r}}\right)={{U}_{r}}\\&-N{\frac {\partial }{\partial \beta }}\left({{Z}_{s}}\right)={{U}_{S}}\\&\Rightarrow U={{U}_{t}}+{{U}_{r}}+{{U}_{S}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.304 KB / 462 B) :

U=βlnZ=β(1N!ZtN)Nβ(Zr)Nβ(Zs)β(1N!ZtN)=UtNβ(Zr)=UrNβ(Zs)=USU=Ut+Ur+US
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>U</mi><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B2;</mi></mrow></mrow></mfrac></mrow><mi>ln</mi><mo>&#x2061;</mo><mi>Z</mi><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B2;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></mrow></mfrac></mrow><msup><msub><mi>Z</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>N</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B2;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>Z</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>N</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B2;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>Z</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B2;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></mrow></mfrac></mrow><msup><msub><mi>Z</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><mi>N</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B2;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>Z</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><mi>N</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B2;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>Z</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>U</mi><mo>=</mo><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mo>+</mo><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Spezifische Wärme zweiatomiger idealer Gase page

Identifiers

  • U
  • β
  • Z
  • β
  • N
  • Zt
  • N
  • N
  • β
  • Zr
  • N
  • β
  • Zs
  • β
  • N
  • Zt
  • N
  • Ut
  • N
  • β
  • Zr
  • Ur
  • N
  • β
  • Zs
  • US
  • U
  • Ut
  • Ur
  • US

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results