Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2561.9 on revision:2561

* Page found: Das ideale Bosegas (eq math.2561.9)

(force rerendering)

Occurrences on the following pages:

Hash: f6d09e8e5a1a6e1622c05372827e4199

TeX (original user input):

\begin{align}
  & \ln Y=\prod\limits_{j=1}^{l}{{}}\ln {{Y}_{j}}=-\sum\limits_{j}^{{}}{{}}\ln \left( 1-\zeta {{e}^{-\beta {{E}_{j}}}} \right) \\ 
 & \approx -\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\ln \left( 1-\zeta {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right) \\ 
 & =-\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\left[ \frac{{{p}^{3}}}{3}\ln \left( 1-\zeta {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right)_{0}^{\infty }-\int_{0}^{\infty }{{}}dp\frac{{{p}^{3}}}{3}\frac{\beta \frac{p}{m}\zeta {{e}^{-\beta \frac{{{p}^{2}}}{2m}}}}{\left( 1-\zeta {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right)} \right] \\ 
 & \frac{{{p}^{3}}}{3}\ln \left( 1-\zeta {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right)_{0}^{\infty }=0 \\ 
 & \Rightarrow \ln Y=\frac{2}{3}\beta \left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{\beta \frac{{{p}^{2}}}{2m}}{\left( \frac{1}{\zeta }{{e}^{\beta \frac{{{p}^{2}}}{2m}}}-1 \right)}=\frac{2}{3}\beta \left( 2s+1 \right)\frac{V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp4\pi {{p}^{2}}\left\langle N(p) \right\rangle E(p) \\ 
 & \Rightarrow \ln Y=\frac{2}{3}\beta \left( 2s+1 \right)\frac{V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp4\pi {{p}^{2}}\left\langle N(p) \right\rangle E(p)=\frac{2}{3}\beta U \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\ln Y=\prod \limits _{j=1}^{l}{}\ln {{Y}_{j}}=-\sum \limits _{j}^{}{}\ln \left(1-\zeta {{e}^{-\beta {{E}_{j}}}}\right)\\&\approx -\left(2s+1\right){\frac {4\pi V}{{h}^{3}}}\int _{0}^{\infty }{}dp{{p}^{2}}\ln \left(1-\zeta {{e}^{-\beta {\frac {{p}^{2}}{2m}}}}\right)\\&=-\left(2s+1\right){\frac {4\pi V}{{h}^{3}}}\left[{\frac {{p}^{3}}{3}}\ln \left(1-\zeta {{e}^{-\beta {\frac {{p}^{2}}{2m}}}}\right)_{0}^{\infty }-\int _{0}^{\infty }{}dp{\frac {{p}^{3}}{3}}{\frac {\beta {\frac {p}{m}}\zeta {{e}^{-\beta {\frac {{p}^{2}}{2m}}}}}{\left(1-\zeta {{e}^{-\beta {\frac {{p}^{2}}{2m}}}}\right)}}\right]\\&{\frac {{p}^{3}}{3}}\ln \left(1-\zeta {{e}^{-\beta {\frac {{p}^{2}}{2m}}}}\right)_{0}^{\infty }=0\\&\Rightarrow \ln Y={\frac {2}{3}}\beta \left(2s+1\right){\frac {4\pi V}{{h}^{3}}}\int _{0}^{\infty }{}dp{{p}^{2}}{\frac {\beta {\frac {{p}^{2}}{2m}}}{\left({\frac {1}{\zeta }}{{e}^{\beta {\frac {{p}^{2}}{2m}}}}-1\right)}}={\frac {2}{3}}\beta \left(2s+1\right){\frac {V}{{h}^{3}}}\int _{0}^{\infty }{}dp4\pi {{p}^{2}}\left\langle N(p)\right\rangle E(p)\\&\Rightarrow \ln Y={\frac {2}{3}}\beta \left(2s+1\right){\frac {V}{{h}^{3}}}\int _{0}^{\infty }{}dp4\pi {{p}^{2}}\left\langle N(p)\right\rangle E(p)={\frac {2}{3}}\beta U\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (11.358 KB / 850 B) :

lnY=j=1llnYj=jln(1ζeβEj)(2s+1)4πVh30dpp2ln(1ζeβp22m)=(2s+1)4πVh3[p33ln(1ζeβp22m)00dpp33βpmζeβp22m(1ζeβp22m)]p33ln(1ζeβp22m)0=0lnY=23β(2s+1)4πVh30dpp2βp22m(1ζeβp22m1)=23β(2s+1)Vh30dp4πp2N(p)E(p)lnY=23β(2s+1)Vh30dp4πp2N(p)E(p)=23βU
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>ln</mi><mo>&#x2061;</mo><mi>Y</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x220F;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munderover><mi>ln</mi><mo>&#x2061;</mo><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mi>&#x03B6;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B2;</mi><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2248;</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>p</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mi>&#x03B6;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>ln</mi><mo>&#x2061;</mo><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mi>&#x03B6;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></msubsup><mo>&#x2212;</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>p</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>p</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mi>&#x03B6;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mi>&#x03B6;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>ln</mi><mo>&#x2061;</mo><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mi>&#x03B6;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></msubsup><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>ln</mi><mo>&#x2061;</mo><mi>Y</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>&#x03B2;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>p</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B6;</mi></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>&#x03B2;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>p</mi><mn>4</mn><mi>&#x03C0;</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>N</mi><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mi>E</mi><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>ln</mi><mo>&#x2061;</mo><mi>Y</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>&#x03B2;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>p</mi><mn>4</mn><mi>&#x03C0;</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>N</mi><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mi>E</mi><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>&#x03B2;</mi><mi>U</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Bosegas page

Identifiers

  • Y
  • j
  • l
  • Yj
  • j
  • ζ
  • e
  • β
  • Ej
  • s
  • π
  • V
  • h
  • p
  • p
  • ζ
  • e
  • β
  • p
  • m
  • s
  • π
  • V
  • h
  • p
  • ζ
  • e
  • β
  • p
  • m
  • p
  • p
  • β
  • p
  • m
  • ζ
  • e
  • β
  • p
  • m
  • ζ
  • e
  • β
  • p
  • m
  • p
  • ζ
  • e
  • β
  • p
  • m
  • Y
  • β
  • s
  • π
  • V
  • h
  • p
  • p
  • β
  • p
  • m
  • ζ
  • e
  • β
  • p
  • m
  • β
  • s
  • V
  • h
  • p
  • π
  • p
  • N
  • p
  • E
  • p
  • Y
  • β
  • s
  • V
  • h
  • p
  • π
  • p
  • N
  • p
  • E
  • p
  • β
  • U

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results