Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2561.5 on revision:2561
* Page found: Das ideale Bosegas (eq math.2561.5)
(force rerendering)Occurrences on the following pages:
Hash: 51c6ab5546790b1230dcd94a6357fddd
TeX (original user input):
\begin{align}
& \left\langle {{N}_{j}} \right\rangle =\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{N}_{j}}p({{N}_{j}})=\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{N}_{j}}\left( 1-{{t}_{j}} \right){{t}_{j}}^{{{N}_{j}}}=\left( 1-{{t}_{j}} \right){{t}_{j}}\frac{d}{d{{t}_{j}}}\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{t}_{j}}^{{{N}_{j}}} \\
& =\left( 1-{{t}_{j}} \right){{t}_{j}}\frac{d}{d{{t}_{j}}}\left( \frac{1}{1-{{t}_{j}}} \right)=\left( 1-{{t}_{j}} \right){{t}_{j}}\left( \frac{1}{{{\left( 1-{{t}_{j}} \right)}^{2}}} \right)=\frac{{{t}_{j}}}{\left( 1-{{t}_{j}} \right)} \\
\end{align}
TeX (checked):
{\begin{aligned}&\left\langle {{N}_{j}}\right\rangle =\sum \limits _{{{N}_{j}}=0}^{\infty }{}{{N}_{j}}p({{N}_{j}})=\sum \limits _{{{N}_{j}}=0}^{\infty }{}{{N}_{j}}\left(1-{{t}_{j}}\right){{t}_{j}}^{{N}_{j}}=\left(1-{{t}_{j}}\right){{t}_{j}}{\frac {d}{d{{t}_{j}}}}\sum \limits _{{{N}_{j}}=0}^{\infty }{}{{t}_{j}}^{{N}_{j}}\\&=\left(1-{{t}_{j}}\right){{t}_{j}}{\frac {d}{d{{t}_{j}}}}\left({\frac {1}{1-{{t}_{j}}}}\right)=\left(1-{{t}_{j}}\right){{t}_{j}}\left({\frac {1}{{\left(1-{{t}_{j}}\right)}^{2}}}\right)={\frac {{t}_{j}}{\left(1-{{t}_{j}}\right)}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.044 KB / 546 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>p</mi><mo stretchy="false">(</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msup><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das ideale Bosegas page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results