Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2561.33 on revision:2561

* Page found: Das ideale Bosegas (eq math.2561.33)

(force rerendering)

Occurrences on the following pages:

Hash: 83aa9184be08ae638d4d9354739297d7

TeX (original user input):

\frac{N\acute{\ }}{V}\approx \left( 2s+1 \right)\frac{2\pi }{{{h}^{3}}}{{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{{{e}^{y}}-1}\approx \left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}\frac{2}{\sqrt{\pi }}\int_{0}^{\infty }{{}}dy{{e}^{-y}}{{y}^{\frac{1}{2}}}

TeX (checked):

{\frac {N{\acute {\ }}}{V}}\approx \left(2s+1\right){\frac {2\pi }{{h}^{3}}}{{\left(2mkT\right)}^{\frac {3}{2}}}\int _{0}^{\infty }{}dy{\frac {{y}^{\frac {1}{2}}}{{{e}^{y}}-1}}\approx \left(2s+1\right){{\left({\frac {2\pi mkT}{{h}^{2}}}\right)}^{\frac {3}{2}}}{\frac {2}{\sqrt {\pi }}}\int _{0}^{\infty }{}dy{{e}^{-y}}{{y}^{\frac {1}{2}}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.462 KB / 512 B) :

N´V(2s+1)2πh3(2mkT)320dyy12ey1(2s+1)(2πmkTh2)322π0dyeyy12
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></mfrac></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>m</mi><mi>k</mi><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msup><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi><mi>m</mi><mi>k</mi><mi>T</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mi>&#x03C0;</mi></msqrt></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>y</mi></mrow></mrow></msup><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Bosegas page

Identifiers

  • N
  • ´
  • V
  • s
  • π
  • h
  • m
  • k
  • T
  • y
  • y
  • e
  • y
  • s
  • π
  • m
  • k
  • T
  • h
  • π
  • y
  • e
  • y
  • y

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results