Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2561.13 on revision:2561
* Page found: Das ideale Bosegas (eq math.2561.13)
(force rerendering)Occurrences on the following pages:
Hash: a8d620b1fbe4bc90f8e0e5184aba5d6b
TeX (original user input):
\begin{align}
& \bar{N}=\sum\limits_{j}^{{}}{{}}\left\langle {{N}_{j}} \right\rangle \approx \left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\exp \left( \frac{\left( {{E}_{j}}-\mu \right)}{kT} \right)-1}=\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\exp \left( \frac{\left( \frac{{{p}^{2}}}{2m}-\mu \right)}{kT} \right)-1} \\
& \frac{{{p}^{2}}}{2mkT}=y \\
& \Rightarrow \bar{N}=\sum\limits_{j}^{{}}{{}}\left\langle {{N}_{j}} \right\rangle \approx \left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\exp \left( \frac{\left( \frac{{{p}^{2}}}{2m}-\mu \right)}{kT} \right)-1} \\
& =\frac{\left( 2s+1 \right)}{2}\frac{4\pi V}{{{h}^{3}}}{{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{{{\xi }^{-1}}\exp \left( y \right)-1}=\frac{\left( 2s+1 \right)}{2}\frac{4\pi V}{{{h}^{3}}}{{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy{{y}^{\frac{1}{2}}}\frac{\xi {{e}^{-y}}}{1-\xi {{e}^{-y}}} \\
& \int_{0}^{\infty }{{}}dy{{y}^{\frac{1}{2}}}\frac{\xi {{e}^{-y}}}{1-\xi {{e}^{-y}}}\approx \xi \int_{0}^{\infty }{{}}dy{{y}^{\frac{1}{2}}}{{e}^{-y}}+{{\xi }^{2}}\int_{0}^{\infty }{{}}dy{{y}^{\frac{1}{2}}}{{e}^{-2y}}+.... \\
& \int_{0}^{\infty }{{}}dy{{y}^{\frac{1}{2}}}{{e}^{-y}}=\frac{1}{2}\sqrt{\pi } \\
& \int_{0}^{\infty }{{}}dy{{y}^{\frac{1}{2}}}{{e}^{-2y}}=\frac{1}{{{2}^{\frac{5}{2}}}}\sqrt{\pi } \\
& \Rightarrow \bar{N}\approx \frac{\left( 2s+1 \right)}{4}\frac{4V}{{{h}^{3}}}{{\left( 2\pi mkT \right)}^{\frac{3}{2}}}\left[ \xi +\frac{1}{{{2}^{\frac{3}{2}}}}{{\xi }^{2}} \right] \\
& \lambda :={{\left( \frac{{{h}^{2}}}{2\pi mkT} \right)}^{\frac{1}{2}}}={{\left( \frac{2s+1}{{{N}_{C}}} \right)}^{\frac{1}{3}}} \\
& \Rightarrow \bar{N}\approx \left( 2s+1 \right)\frac{V}{{{\lambda }^{3}}}\xi \left[ 1+\frac{1}{{{2}^{\frac{3}{2}}}}\xi \right]=\left( 2s+1 \right)\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}\left[ 1+\frac{1}{{{2}^{\frac{3}{2}}}}{{e}^{\frac{\mu }{kT}}} \right] \\
\end{align}
TeX (checked):
{\begin{aligned}&{\bar {N}}=\sum \limits _{j}^{}{}\left\langle {{N}_{j}}\right\rangle \approx \left(2s+1\right){\frac {4\pi V}{{h}^{3}}}\int _{0}^{\infty }{}dp{{p}^{2}}{\frac {1}{\exp \left({\frac {\left({{E}_{j}}-\mu \right)}{kT}}\right)-1}}=\left(2s+1\right){\frac {4\pi V}{{h}^{3}}}\int _{0}^{\infty }{}dp{{p}^{2}}{\frac {1}{\exp \left({\frac {\left({\frac {{p}^{2}}{2m}}-\mu \right)}{kT}}\right)-1}}\\&{\frac {{p}^{2}}{2mkT}}=y\\&\Rightarrow {\bar {N}}=\sum \limits _{j}^{}{}\left\langle {{N}_{j}}\right\rangle \approx \left(2s+1\right){\frac {4\pi V}{{h}^{3}}}\int _{0}^{\infty }{}dp{{p}^{2}}{\frac {1}{\exp \left({\frac {\left({\frac {{p}^{2}}{2m}}-\mu \right)}{kT}}\right)-1}}\\&={\frac {\left(2s+1\right)}{2}}{\frac {4\pi V}{{h}^{3}}}{{\left(2mkT\right)}^{\frac {3}{2}}}\int _{0}^{\infty }{}dy{\frac {{y}^{\frac {1}{2}}}{{{\xi }^{-1}}\exp \left(y\right)-1}}={\frac {\left(2s+1\right)}{2}}{\frac {4\pi V}{{h}^{3}}}{{\left(2mkT\right)}^{\frac {3}{2}}}\int _{0}^{\infty }{}dy{{y}^{\frac {1}{2}}}{\frac {\xi {{e}^{-y}}}{1-\xi {{e}^{-y}}}}\\&\int _{0}^{\infty }{}dy{{y}^{\frac {1}{2}}}{\frac {\xi {{e}^{-y}}}{1-\xi {{e}^{-y}}}}\approx \xi \int _{0}^{\infty }{}dy{{y}^{\frac {1}{2}}}{{e}^{-y}}+{{\xi }^{2}}\int _{0}^{\infty }{}dy{{y}^{\frac {1}{2}}}{{e}^{-2y}}+....\\&\int _{0}^{\infty }{}dy{{y}^{\frac {1}{2}}}{{e}^{-y}}={\frac {1}{2}}{\sqrt {\pi }}\\&\int _{0}^{\infty }{}dy{{y}^{\frac {1}{2}}}{{e}^{-2y}}={\frac {1}{{2}^{\frac {5}{2}}}}{\sqrt {\pi }}\\&\Rightarrow {\bar {N}}\approx {\frac {\left(2s+1\right)}{4}}{\frac {4V}{{h}^{3}}}{{\left(2\pi mkT\right)}^{\frac {3}{2}}}\left[\xi +{\frac {1}{{2}^{\frac {3}{2}}}}{{\xi }^{2}}\right]\\&\lambda :={{\left({\frac {{h}^{2}}{2\pi mkT}}\right)}^{\frac {1}{2}}}={{\left({\frac {2s+1}{{N}_{C}}}\right)}^{\frac {1}{3}}}\\&\Rightarrow {\bar {N}}\approx \left(2s+1\right){\frac {V}{{\lambda }^{3}}}\xi \left[1+{\frac {1}{{2}^{\frac {3}{2}}}}\xi \right]=\left(2s+1\right){\frac {V}{{\lambda }^{3}}}{{e}^{\frac {\mu }{kT}}}\left[1+{\frac {1}{{2}^{\frac {3}{2}}}}{{e}^{\frac {\mu }{kT}}}\right]\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (19.421 KB / 1.068 KB) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>≈</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>p</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>−</mo><mi>μ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>p</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo>−</mo><mi>μ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mn>1</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mi>y</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>≈</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>p</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo>−</mo><mi>μ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mn>1</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>m</mi><mi>k</mi><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>1</mn></mrow></mrow></msup><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>y</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>m</mi><mi>k</mi><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ξ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>−</mo><mi>ξ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ξ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>−</mo><mi>ξ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup></mrow></mrow></mfrac></mrow><mo>≈</mo><mi>ξ</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup><mo>+</mo><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>2</mn><mi>y</mi></mrow></mrow></msup><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>y</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><msqrt><mi>π</mi></msqrt></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>2</mn><mi>y</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>5</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><msqrt><mi>π</mi></msqrt></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>π</mi><mi>m</mi><mi>k</mi><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>ξ</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow></mfrac></mrow><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>λ</mi><mi>:</mi><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>π</mi><mi>m</mi><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>C</mi></mrow></msub></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mo>≈</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>λ</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mi>ξ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow></mfrac></mrow><mi>ξ</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>λ</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>μ</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>T</mi></mrow></mrow></mfrac></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das ideale Bosegas page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results