Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2561.0 on revision:2561
* Page found: Das ideale Bosegas (eq math.2561.0)
(force rerendering)Occurrences on the following pages:
Hash: 4e210ea75c4435f94fdddd4d04e63171
TeX (original user input):
\begin{align}
& Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}=0}^{\infty }{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{\infty }{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right) \\
& =\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{t}_{j}}^{{{N}_{j}}} \right) \\
& {{t}_{j}}:=\exp \left( -\beta \left( {{E}_{j}}-\mu \right) \right) \\
& Y=\prod\limits_{j=1}^{l}{{}}\frac{1}{1-{{t}_{j}}}=\prod\limits_{j=1}^{l}{{}}{{Y}_{j}} \\
\end{align}
TeX (checked):
{\begin{aligned}&Y=\sum \limits _{{{N}_{1}}...{{N}_{l}}=0}^{\infty }{}\exp \left(-\beta \sum \limits _{j=1}^{l}{}\left({{N}_{j}}{{E}_{j}}-\mu {{N}_{j}}\right)\right)=\prod \limits _{j=1}^{l}{}\left(\sum \limits _{{{N}_{j}}=0}^{\infty }{}\exp \left(-\beta \left({{N}_{j}}{{E}_{j}}-\mu {{N}_{j}}\right)\right)\right)\\&=\prod \limits _{j=1}^{l}{}\left(\sum \limits _{{{N}_{j}}=0}^{\infty }{}{{t}_{j}}^{{N}_{j}}\right)\\&{{t}_{j}}:=\exp \left(-\beta \left({{E}_{j}}-\mu \right)\right)\\&Y=\prod \limits _{j=1}^{l}{}{\frac {1}{1-{{t}_{j}}}}=\prod \limits _{j=1}^{l}{}{{Y}_{j}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.921 KB / 560 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>Y</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><mi>β</mi><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>−</mo><mi>μ</mi><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∏</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><mi>β</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>−</mo><mi>μ</mi><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munderover><mo form="prefix" texclass="OP">∏</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msup><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><msub><mi>N</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>:</mi><mo>=</mo><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><mi>β</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>−</mo><mi>μ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>Y</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">∏</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∏</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munderover><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das ideale Bosegas page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results