Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2555.52 on revision:2555

* Page found: Das ideale Fermigas (eq math.2555.52)

(force rerendering)

Occurrences on the following pages:

Hash: 41926e5c66da2802f86e11e91ba91b28

TeX (original user input):

\begin{align}

& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)\approx \frac{{{\left( \eta  \right)}^{s+1}}}{s+1}+\frac{s}{2}{{\left( \eta  \right)}^{s-1}}\frac{{{\pi }^{2}}}{3} \\

& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)=\frac{{{\left( \eta  \right)}^{s+1}}}{s+1}+\frac{s}{2}{{\left( \eta  \right)}^{s-1}}\frac{{{\pi }^{2}}}{3}+O\left( {{\left( \eta  \right)}^{s-3}} \right) \\

& \Rightarrow {{F}_{s}}\left( \eta  \right)=\frac{1}{\Gamma \left( s+1 \right)}\left[ \frac{{{\left( \eta  \right)}^{s+1}}}{s+1}+\frac{s{{\pi }^{2}}}{6}{{\left( \eta  \right)}^{s-1}}+O\left( {{\left( \eta  \right)}^{s-3}} \right) \right] \\

\end{align}

TeX (checked):

{\begin{aligned}&\Gamma \left(s+1\right){{F}_{s}}\left(\eta \right)\approx {\frac {{\left(\eta \right)}^{s+1}}{s+1}}+{\frac {s}{2}}{{\left(\eta \right)}^{s-1}}{\frac {{\pi }^{2}}{3}}\\&\Gamma \left(s+1\right){{F}_{s}}\left(\eta \right)={\frac {{\left(\eta \right)}^{s+1}}{s+1}}+{\frac {s}{2}}{{\left(\eta \right)}^{s-1}}{\frac {{\pi }^{2}}{3}}+O\left({{\left(\eta \right)}^{s-3}}\right)\\&\Rightarrow {{F}_{s}}\left(\eta \right)={\frac {1}{\Gamma \left(s+1\right)}}\left[{\frac {{\left(\eta \right)}^{s+1}}{s+1}}+{\frac {s{{\pi }^{2}}}{6}}{{\left(\eta \right)}^{s-1}}+O\left({{\left(\eta \right)}^{s-3}}\right)\right]\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.683 KB / 522 B) :

Γ(s+1)Fs(η)(η)s+1s+1+s2(η)s1π23Γ(s+1)Fs(η)=(η)s+1s+1+s2(η)s1π23+O((η)s3)Fs(η)=1Γ(s+1)[(η)s+1s+1+sπ26(η)s1+O((η)s3)]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C0;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C0;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mo>+</mo><mi>O</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>&#x2212;</mo><mn>3</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><msup><mi>&#x03C0;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>6</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mo>+</mo><mi>O</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>&#x2212;</mo><mn>3</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Fermigas page

Identifiers

  • Γ
  • s
  • Fs
  • η
  • η
  • s
  • s
  • s
  • η
  • s
  • π
  • Γ
  • s
  • Fs
  • η
  • η
  • s
  • s
  • s
  • η
  • s
  • π
  • O
  • η
  • s
  • Fs
  • η
  • Γ
  • s
  • η
  • s
  • s
  • s
  • π
  • η
  • s
  • O
  • η
  • s

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results