Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2555.51 on revision:2555
* Page found: Das ideale Fermigas (eq math.2555.51)
(force rerendering)Occurrences on the following pages:
Hash: 8127e84bb8003a9c12035b0d85f9a9ca
TeX (original user input):
\begin{align}
& I=\int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=2\int_{0}^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=-2\left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }+4\int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)} \\
& \left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }=0 \\
& \int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)}=\frac{{{\pi }^{2}}}{12} \\
& \Rightarrow I=\frac{{{\pi }^{2}}}{3} \\
\end{align}
TeX (checked):
{\begin{aligned}&I=\int _{-\infty }^{\infty }{}dx{{x}^{2}}{\frac {{e}^{x}}{{\left({{e}^{x}}+1\right)}^{2}}}=2\int _{0}^{\infty }{}dx{{x}^{2}}{\frac {{e}^{x}}{{\left({{e}^{x}}+1\right)}^{2}}}=-2\left[{{x}^{2}}{\frac {1}{\left({{e}^{x}}+1\right)}}\right]_{0}^{\infty }+4\int _{0}^{\infty }{}dx{\frac {x}{\left({{e}^{x}}+1\right)}}\\&\left[{{x}^{2}}{\frac {1}{\left({{e}^{x}}+1\right)}}\right]_{0}^{\infty }=0\\&\int _{0}^{\infty }{}dx{\frac {x}{\left({{e}^{x}}+1\right)}}={\frac {{\pi }^{2}}{12}}\\&\Rightarrow I={\frac {{\pi }^{2}}{3}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.192 KB / 557 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>I</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi mathvariant="normal">∞</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>x</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>=</mo><mn>2</mn><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>x</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>=</mo><mo>−</mo><mn>2</mn><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></msubsup><mo>+</mo><mn>4</mn><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>x</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></msubsup><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>x</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>π</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>2</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi>I</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>π</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das ideale Fermigas page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results