Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2555.43 on revision:2555

* Page found: Das ideale Fermigas (eq math.2555.43)

(force rerendering)

Occurrences on the following pages:

Hash: 095464f732629913273a7b2cb90a64b0

TeX (original user input):

\begin{align}

& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right):=\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{1}{s+1}\int_{0}^{\infty }{{}}dy\frac{d}{dy}\left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \\

& =\frac{1}{s+1}\left. \left[ \left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \right] \right|_{0}^{\infty }+\frac{1}{s+1}\int_{0}^{\infty }{{}}dy{{y}^{s+1}}\frac{{{e}^{y-\eta }}}{{{\left( {{e}^{y-\eta }}+1 \right)}^{2}}} \\

& \frac{1}{s+1}\left. \left[ \left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \right] \right|_{0}^{\infty }=0 \\

\end{align}

TeX (checked):

{\begin{aligned}&\Gamma \left(s+1\right){{F}_{s}}\left(\eta \right):=\int _{0}^{\infty }{}dy{\frac {{y}^{s}}{\left({{e}^{y-\eta }}+1\right)}}={\frac {1}{s+1}}\int _{0}^{\infty }{}dy{\frac {d}{dy}}\left({{y}^{s+1}}\right){\frac {1}{\left({{e}^{y-\eta }}+1\right)}}\\&={\frac {1}{s+1}}\left.\left[\left({{y}^{s+1}}\right){\frac {1}{\left({{e}^{y-\eta }}+1\right)}}\right]\right|_{0}^{\infty }+{\frac {1}{s+1}}\int _{0}^{\infty }{}dy{{y}^{s+1}}{\frac {{e}^{y-\eta }}{{\left({{e}^{y-\eta }}+1\right)}^{2}}}\\&{\frac {1}{s+1}}\left.\left[\left({{y}^{s+1}}\right){\frac {1}{\left({{e}^{y-\eta }}+1\right)}}\right]\right|_{0}^{\infty }=0\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.416 KB / 608 B) :

Γ(s+1)Fs(η):=0dyys(eyη+1)=1s+10dyddy(ys+1)1(eyη+1)=1s+1[(ys+1)1(eyη+1)]|0+1s+10dyys+1eyη(eyη+1)21s+1[(ys+1)1(eyη+1)]|0=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>:</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>y</mi><mo>&#x2212;</mo><mi>&#x03B7;</mi></mrow></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>y</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>y</mi><mo>&#x2212;</mo><mi>&#x03B7;</mi></mrow></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>y</mi><mo>&#x2212;</mo><mi>&#x03B7;</mi></mrow></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></msubsup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mi>d</mi><mi>y</mi><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>y</mi><mo>&#x2212;</mo><mi>&#x03B7;</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>y</mi><mo>&#x2212;</mo><mi>&#x03B7;</mi></mrow></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>y</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>y</mi><mo>&#x2212;</mo><mi>&#x03B7;</mi></mrow></mrow></msup><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></msubsup><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Fermigas page

Identifiers

  • Γ
  • s
  • Fs
  • η
  • y
  • y
  • s
  • e
  • y
  • η
  • s
  • y
  • d
  • d
  • y
  • y
  • s
  • e
  • y
  • η
  • s
  • y
  • s
  • e
  • y
  • η
  • s
  • y
  • y
  • s
  • e
  • y
  • η
  • e
  • y
  • η
  • s
  • y
  • s
  • e
  • y
  • η

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results