Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2492.56 on revision:2492

* Page found: Gleichgewichtsbedingungen (eq math.2492.56)

(force rerendering)

Occurrences on the following pages:

Hash: 3004b449f39d8dc6ea9a3249b9b21df1

TeX (original user input):

\begin{align}

& {{\left( \frac{\partial g\acute{\ }\left( T,p\acute{\ } \right)}{\partial p\acute{\ }} \right)}_{T}}\left[ {{\left( \frac{\partial P}{\partial r} \right)}_{T}}-\frac{2}{{{r}^{2}}}\sigma  \right]={{\left( \frac{\partial g\acute{\ }\acute{\ }}{\partial p\acute{\ }\acute{\ }} \right)}_{T}}{{\left( \frac{\partial P}{\partial r} \right)}_{T}} \\

& \left( \frac{\partial g\acute{\ }\acute{\ }}{\partial p\acute{\ }\acute{\ }} \right)=v\acute{\ }\acute{\ } \\

& \left( \frac{\partial g\acute{\ }\left( T,p\acute{\ } \right)}{\partial p\acute{\ }} \right)=v\acute{\ } \\

& \Rightarrow {{\left( \frac{\partial P}{\partial r} \right)}_{T}}=-\frac{2}{{{r}^{2}}}\sigma \frac{v\acute{\ }}{v\acute{\ }\acute{\ }-v\acute{\ }}\approx -\frac{2}{{{r}^{2}}}\sigma \frac{v\acute{\ }}{v\acute{\ }\acute{\ }}=idGas=-\frac{2\sigma v\acute{\ }}{R{{\operatorname{Tr}}^{2}}}P \\

& \Rightarrow \ln \frac{P}{{{P}_{\infty }}}=\frac{2\sigma v\acute{\ }}{R\operatorname{Tr}} \\

& P={{P}_{\infty }}(T)\exp \frac{2\sigma v\acute{\ }}{R\operatorname{Tr}} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\left({\frac {\partial g{\acute {\ }}\left(T,p{\acute {\ }}\right)}{\partial p{\acute {\ }}}}\right)}_{T}}\left[{{\left({\frac {\partial P}{\partial r}}\right)}_{T}}-{\frac {2}{{r}^{2}}}\sigma \right]={{\left({\frac {\partial g{\acute {\ }}{\acute {\ }}}{\partial p{\acute {\ }}{\acute {\ }}}}\right)}_{T}}{{\left({\frac {\partial P}{\partial r}}\right)}_{T}}\\&\left({\frac {\partial g{\acute {\ }}{\acute {\ }}}{\partial p{\acute {\ }}{\acute {\ }}}}\right)=v{\acute {\ }}{\acute {\ }}\\&\left({\frac {\partial g{\acute {\ }}\left(T,p{\acute {\ }}\right)}{\partial p{\acute {\ }}}}\right)=v{\acute {\ }}\\&\Rightarrow {{\left({\frac {\partial P}{\partial r}}\right)}_{T}}=-{\frac {2}{{r}^{2}}}\sigma {\frac {v{\acute {\ }}}{v{\acute {\ }}{\acute {\ }}-v{\acute {\ }}}}\approx -{\frac {2}{{r}^{2}}}\sigma {\frac {v{\acute {\ }}}{v{\acute {\ }}{\acute {\ }}}}=idGas=-{\frac {2\sigma v{\acute {\ }}}{R{{\operatorname {Tr} }^{2}}}}P\\&\Rightarrow \ln {\frac {P}{{P}_{\infty }}}={\frac {2\sigma v{\acute {\ }}}{R\operatorname {Tr} }}\\&P={{P}_{\infty }}(T)\exp {\frac {2\sigma v{\acute {\ }}}{R\operatorname {Tr} }}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (10.555 KB / 730 B) :

(g´(T,p´)p´)T[(Pr)T2r2σ]=(g´´p´´)T(Pr)T(g´´p´´)=v´´(g´(T,p´)p´)=v´(Pr)T=2r2σv´v´´v´2r2σv´v´´=idGas=2σv´RTr2PlnPP=2σv´RTrP=P(T)exp2σv´RTr
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>T</mi><mo>,</mo><mi>p</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>P</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mi>&#x03C3;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>P</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>T</mi><mo>,</mo><mi>p</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>P</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo>&#x2248;</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><mi>i</mi><mi>d</mi><mi>G</mi><mi>a</mi><mi>s</mi><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C3;</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>R</mi><msup><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi>P</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>P</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></msub></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C3;</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>R</mi><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>P</mi><mo>=</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></msub><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C3;</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>R</mi><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Gleichgewichtsbedingungen page

Identifiers

  • g
  • ´
  • T
  • p
  • ´
  • p
  • ´
  • T
  • P
  • r
  • T
  • r
  • σ
  • g
  • ´
  • ´
  • p
  • ´
  • ´
  • T
  • P
  • r
  • T
  • g
  • ´
  • ´
  • p
  • ´
  • ´
  • v
  • ´
  • ´
  • g
  • ´
  • T
  • p
  • ´
  • p
  • ´
  • v
  • ´
  • P
  • r
  • T
  • r
  • σ
  • v
  • ´
  • v
  • ´
  • ´
  • v
  • ´
  • r
  • σ
  • v
  • ´
  • v
  • ´
  • ´
  • i
  • d
  • G
  • a
  • s
  • σ
  • v
  • ´
  • R
  • P
  • P
  • P
  • σ
  • v
  • ´
  • R
  • P
  • P
  • T
  • σ
  • v
  • ´
  • R

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results