Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2461.61 on revision:2461

* Page found: Die Hauptsätze der Thermodynamik (eq math.2461.61)

(force rerendering)

Occurrences on the following pages:

Hash: 2711f93a396f5957ef56d8f88b49222d

TeX (original user input):

\begin{align}
& 0\ge \oint\limits_{{}}{{}}\frac{\delta Q}{T}={{\left. \int_{1}^{2}{{}}\frac{\delta Q}{T} \right|}_{irreversibel}}+\left. \int_{2}^{1}{{}}\frac{\delta {{Q}_{r}}}{T} \right| \\
& \left. \int_{2}^{1}{{}}\frac{\delta {{Q}_{r}}}{T} \right|={{S}_{1}}-{{S}_{2}} \\
& \Leftrightarrow {{S}_{2}}-{{S}_{1}}\ge \int_{1}^{2}{{}}\frac{\delta Q}{T} \\
\end{align}

TeX (checked):

{\begin{aligned}&0\geq \oint \limits _{}{}{\frac {\delta Q}{T}}={{\left.\int _{1}^{2}{}{\frac {\delta Q}{T}}\right|}_{irreversibel}}+\left.\int _{2}^{1}{}{\frac {\delta {{Q}_{r}}}{T}}\right|\\&\left.\int _{2}^{1}{}{\frac {\delta {{Q}_{r}}}{T}}\right|={{S}_{1}}-{{S}_{2}}\\&\Leftrightarrow {{S}_{2}}-{{S}_{1}}\geq \int _{1}^{2}{}{\frac {\delta Q}{T}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.385 KB / 512 B) :

0δQT=12δQT|irreversibel+21δQrT|21δQrT|=S1S2S2S112δQT
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mn>0</mn><mo>&#x2265;</mo><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"></mrow></munder><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B4;</mi><mi>Q</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mstyle><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B4;</mi><mi>Q</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>r</mi><mi>r</mi><mi>e</mi><mi>v</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>b</mi><mi>e</mi><mi>l</mi></mrow></mrow></msub><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B4;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B4;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D4;</mo><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2265;</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B4;</mi><mi>Q</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Die Hauptsätze der Thermodynamik page

Identifiers

  • δ
  • Q
  • T
  • δ
  • Q
  • T
  • i
  • r
  • r
  • e
  • v
  • e
  • r
  • s
  • i
  • b
  • e
  • l
  • δ
  • Qr
  • T
  • δ
  • Qr
  • T
  • S1
  • S2
  • S2
  • S1
  • δ
  • Q
  • T

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results