Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2446.21 on revision:2446

* Page found: Thermodynamischer Limes (eq math.2446.21)

(force rerendering)

Occurrences on the following pages:

Hash: 8a6dc285ad19a327f0d43ccf2447016a

TeX (original user input):

\begin{align}

& \begin{matrix}

\lim   \\

\alpha \to \infty   \\

\end{matrix}\frac{\left\langle {{\left( \alpha \Delta {{M}^{n}} \right)}^{2}} \right\rangle }{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}=-\begin{matrix}

\lim   \\

\alpha \to \infty   \\

\end{matrix}\alpha \frac{1}{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}} \\

& \frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}}<\infty  \\

& \Rightarrow \begin{matrix}

\lim   \\

\alpha \to \infty   \\

\end{matrix}\frac{\left\langle {{\left( \alpha \Delta {{M}^{n}} \right)}^{2}} \right\rangle }{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}=-\begin{matrix}

\lim   \\

\alpha \to \infty   \\

\end{matrix}\alpha \frac{1}{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}}=0 \\

\end{align}

TeX (checked):

{\begin{aligned}&{\begin{matrix}\lim \\\alpha \to \infty \\\end{matrix}}{\frac {\left\langle {{\left(\alpha \Delta {{M}^{n}}\right)}^{2}}\right\rangle }{{\left\langle \alpha {{M}^{n}}\right\rangle }^{2}}}=-{\begin{matrix}\lim \\\alpha \to \infty \\\end{matrix}}\alpha {\frac {1}{{\left\langle \alpha {{M}^{n}}\right\rangle }^{2}}}{\frac {{{\partial }^{2}}\Psi \left(z\right)}{\partial {{\lambda }_{n}}^{2}}}\\&{\frac {{{\partial }^{2}}\Psi \left(z\right)}{\partial {{\lambda }_{n}}^{2}}}<\infty \\&\Rightarrow {\begin{matrix}\lim \\\alpha \to \infty \\\end{matrix}}{\frac {\left\langle {{\left(\alpha \Delta {{M}^{n}}\right)}^{2}}\right\rangle }{{\left\langle \alpha {{M}^{n}}\right\rangle }^{2}}}=-{\begin{matrix}\lim \\\alpha \to \infty \\\end{matrix}}\alpha {\frac {1}{{\left\langle \alpha {{M}^{n}}\right\rangle }^{2}}}{\frac {{{\partial }^{2}}\Psi \left(z\right)}{\partial {{\lambda }_{n}}^{2}}}=0\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.797 KB / 567 B) :

limα(αΔMn)2αMn2=limαα1αMn22Ψ(z)λn22Ψ(z)λn2<limα(αΔMn)2αMn2=limαα1αMn22Ψ(z)λn2=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>&#x03B1;</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B1;</mi><mi mathvariant="normal">&#x0394;</mi><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B1;</mi><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>&#x03B1;</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B1;</mi><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>z</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>z</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>&lt;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>&#x03B1;</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B1;</mi><mi mathvariant="normal">&#x0394;</mi><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B1;</mi><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>&#x03B1;</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03B1;</mi><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>z</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Thermodynamischer Limes page

Identifiers

  • α
  • α
  • Δ
  • M
  • n
  • α
  • M
  • n
  • α
  • α
  • α
  • M
  • n
  • Ψ
  • z
  • λn
  • Ψ
  • z
  • λn
  • α
  • α
  • Δ
  • M
  • n
  • α
  • M
  • n
  • α
  • α
  • α
  • M
  • n
  • Ψ
  • z
  • λn

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results