Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2441.67 on revision:2441

* Page found: Spezielle Verteilungen (eq math.2441.67)

(force rerendering)

Occurrences on the following pages:

Hash: f115f16d9e4ff748470c346436f41875

TeX (original user input):

\begin{align}

& \omega =\int_{{}}^{{}}{d\xi }\delta \left( U-H\left( \xi  \right) \right)=\frac{d\Omega }{dU} \\

& wegen \\

& \frac{d}{dx}\Theta \left( x \right)=\delta \left( x \right) \\

& \Rightarrow \Omega \left( U \right)=\int_{{}}^{{}}{d\xi }\Theta \left( U-H\left( \xi  \right) \right) \\

& \Theta \left( U-H\left( \xi  \right) \right)=\left\{ \begin{matrix}

1f\ddot{u}rH\left( \xi  \right)<U  \\

0,sonst  \\

\end{matrix} \right. \\

\end{align}

TeX (checked):

{\begin{aligned}&\omega =\int _{}^{}{d\xi }\delta \left(U-H\left(\xi \right)\right)={\frac {d\Omega }{dU}}\\&wegen\\&{\frac {d}{dx}}\Theta \left(x\right)=\delta \left(x\right)\\&\Rightarrow \Omega \left(U\right)=\int _{}^{}{d\xi }\Theta \left(U-H\left(\xi \right)\right)\\&\Theta \left(U-H\left(\xi \right)\right)=\left\{{\begin{matrix}1f{\ddot {u}}rH\left(\xi \right)<U\\0,sonst\\\end{matrix}}\right.\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.641 KB / 600 B) :

ω=dξδ(UH(ξ))=dΩdUwegenddxΘ(x)=δ(x)Ω(U)=dξΘ(UH(ξ))Θ(UH(ξ))={1fu¨rH(ξ)<U0,sonst
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03C9;</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03BE;</mi></mrow><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>U</mi><mo>&#x2212;</mo><mi>H</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi mathvariant="normal">&#x03A9;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>U</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>w</mi><mi>e</mi><mi>g</mi><mi>e</mi><mi>n</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>x</mi></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x0398;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>x</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>x</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x03A9;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>U</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03BE;</mi></mrow><mi mathvariant="normal">&#x0398;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>U</mi><mo>&#x2212;</mo><mi>H</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x0398;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>U</mi><mo>&#x2212;</mo><mi>H</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mi>H</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&lt;</mo><mi>U</mi></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mi>s</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Spezielle Verteilungen page

Identifiers

  • ω
  • ξ
  • δ
  • U
  • H
  • ξ
  • d
  • Ω
  • d
  • U
  • w
  • e
  • g
  • e
  • n
  • d
  • d
  • x
  • Θ
  • x
  • δ
  • x
  • Ω
  • U
  • ξ
  • Θ
  • U
  • H
  • ξ
  • Θ
  • U
  • H
  • ξ
  • f
  • u¨
  • r
  • H
  • ξ
  • U
  • s
  • o
  • n
  • s
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results