Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2392.61 on revision:2392

* Page found: Informationsmaße (eq math.2392.61)

(force rerendering)

Occurrences on the following pages:

Hash: 161943c282e0fa2fc1085c22d80f2153

TeX (original user input):

\begin{align}

& {{P}_{i}}=\rho \left( {{x}^{i}} \right){{\Delta }^{d}}x \\

& I(P)=\sum\limits_{i}^{{}}{{}}{{\Delta }^{d}}x\rho \left( {{x}^{i}} \right)\ln \left( {{\Delta }^{d}}x\rho \left( {{x}^{i}} \right) \right)=\sum\limits_{i}^{{}}{{}}{{\Delta }^{d}}x\rho \left( {{x}^{i}} \right)\ln \left( \rho \left( {{x}^{i}} \right) \right)+\sum\limits_{i}^{{}}{{}}{{\Delta }^{d}}x\rho \left( {{x}^{i}} \right)\ln \left( {{\Delta }^{d}}x \right) \\

& \sum\limits_{i}^{{}}{{}}{{\Delta }^{d}}x\rho \left( {{x}^{i}} \right)=1 \\

& \sum\limits_{i}^{{}}{{}}{{\Delta }^{d}}x\rho \left( {{x}^{i}} \right)\ln \left( {{\Delta }^{d}}x \right)=const. \\

\end{align}

TeX (checked):

{\begin{aligned}&{{P}_{i}}=\rho \left({{x}^{i}}\right){{\Delta }^{d}}x\\&I(P)=\sum \limits _{i}^{}{}{{\Delta }^{d}}x\rho \left({{x}^{i}}\right)\ln \left({{\Delta }^{d}}x\rho \left({{x}^{i}}\right)\right)=\sum \limits _{i}^{}{}{{\Delta }^{d}}x\rho \left({{x}^{i}}\right)\ln \left(\rho \left({{x}^{i}}\right)\right)+\sum \limits _{i}^{}{}{{\Delta }^{d}}x\rho \left({{x}^{i}}\right)\ln \left({{\Delta }^{d}}x\right)\\&\sum \limits _{i}^{}{}{{\Delta }^{d}}x\rho \left({{x}^{i}}\right)=1\\&\sum \limits _{i}^{}{}{{\Delta }^{d}}x\rho \left({{x}^{i}}\right)\ln \left({{\Delta }^{d}}x\right)=const.\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.59 KB / 497 B) :

Pi=ρ(xi)ΔdxI(P)=iΔdxρ(xi)ln(Δdxρ(xi))=iΔdxρ(xi)ln(ρ(xi))+iΔdxρ(xi)ln(Δdx)iΔdxρ(xi)=1iΔdxρ(xi)ln(Δdx)=const.
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>I</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ln</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow></msup><mi>x</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi><mo>.</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Informationsmaße page

Identifiers

  • Pi
  • ρ
  • x
  • i
  • Δ
  • d
  • x
  • I
  • P
  • i
  • Δ
  • d
  • x
  • ρ
  • x
  • i
  • Δ
  • d
  • x
  • ρ
  • x
  • i
  • i
  • Δ
  • d
  • x
  • ρ
  • x
  • i
  • ρ
  • x
  • i
  • i
  • Δ
  • d
  • x
  • ρ
  • x
  • i
  • Δ
  • d
  • x
  • i
  • Δ
  • d
  • x
  • ρ
  • x
  • i
  • i
  • Δ
  • d
  • x
  • ρ
  • x
  • i
  • Δ
  • d
  • x
  • c
  • o
  • n
  • s
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results