Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2284.32 on revision:2284
* Page found: Beispiel des Großkanonischen Ensenbles (eq math.2284.32)
(force rerendering)Occurrences on the following pages:
Hash: 5272a6f6743736ebc8ebd9c24d904c89
TeX (original user input):
\begin{align}
& \left( \frac{\partial {{S}_{1}}}{\partial {{E}_{1}}}-\frac{\partial {{S}_{2}}}{\partial {{E}_{2}}} \right)d{{E}_{2}}=0 \\
& \left( \frac{\partial {{S}_{1}}}{\partial {{{\bar{N}}}_{1}}}-\frac{\partial {{S}_{2}}}{\partial {{{\bar{N}}}_{2}}} \right)d{{{\bar{N}}}_{2}}=0 \\
& \left( \frac{\partial {{S}_{1}}}{\partial {{V}_{1}}}-\frac{\partial {{S}_{2}}}{\partial {{V}_{2}}} \right)d{{V}_{2}}=0
\end{align}
TeX (checked):
{\begin{aligned}&\left({\frac {\partial {{S}_{1}}}{\partial {{E}_{1}}}}-{\frac {\partial {{S}_{2}}}{\partial {{E}_{2}}}}\right)d{{E}_{2}}=0\\&\left({\frac {\partial {{S}_{1}}}{\partial {{\bar {N}}_{1}}}}-{\frac {\partial {{S}_{2}}}{\partial {{\bar {N}}_{2}}}}\right)d{{\bar {N}}_{2}}=0\\&\left({\frac {\partial {{S}_{1}}}{\partial {{V}_{1}}}}-{\frac {\partial {{S}_{2}}}{\partial {{V}_{2}}}}\right)d{{V}_{2}}=0\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (3.639 KB / 412 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Beispiel des Großkanonischen Ensenbles page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results