Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2232.56 on revision:2232

* Page found: Quantentheoretischer Zugang (eq math.2232.56)

(force rerendering)

Occurrences on the following pages:

Hash: f9ddb5dadd920ca6fbd2e93739985602

TeX (original user input):

\begin{align}
  & \left\langle  \chi  | {{O}_{s}}|\chi  \right\rangle =\sum\limits_{\begin{smallmatrix}
 n,n' \\
 b,b'
\end{smallmatrix}}{c{{*}_{n',b'}}}{{c}_{n,b}}\left\langle  n' \right|\left\langle  b' \right|{{O}_{S}}\underbrace{\left| b \right\rangle }_{{{\delta }_{b,b'}}}\left| n \right\rangle  \\
 & =\sum\limits_{n,n'}{\underbrace{\sum\limits_{b}{c{{*}_{n',b}}}{{c}_{n,b}}}_{\begin{smallmatrix}
 {{\rho }_{n,n'}}-\text{Matrix} \\
 \text{hier findet sich Umgebung }
 \\
 \text{wieder}
\end{smallmatrix}}}\left\langle  n' \right|{{O}_{S}}\left| n \right\rangle  
\end{align}

TeX (checked):

{\begin{aligned}&\left\langle \chi |{{O}_{s}}|\chi \right\rangle =\sum \limits _{\begin{smallmatrix}n,n'\\b,b'\end{smallmatrix}}{c{{*}_{n',b'}}}{{c}_{n,b}}\left\langle n'\right|\left\langle b'\right|{{O}_{S}}\underbrace {\left|b\right\rangle } _{{\delta }_{b,b'}}\left|n\right\rangle \\&=\sum \limits _{n,n'}{\underbrace {\sum \limits _{b}{c{{*}_{n',b}}}{{c}_{n,b}}} _{\begin{smallmatrix}{{\rho }_{n,n'}}-{\text{Matrix}}\\{\text{hier findet sich Umgebung }}\\{\text{wieder}}\end{smallmatrix}}}\left\langle n'\right|{{O}_{S}}\left|n\right\rangle \end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.036 KB / 624 B) :

χ|Os|χ=n,nb,bc*n,bcn,bn|b|OS|bδb,b|n=n,nbc*n,bcn,bρn,nMatrixhier findet sich Umgebung wiedern|OS|n
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>&#x03C7;</mi><mo>|</mo><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo>|</mo><mi>&#x03C7;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo data-mjx-texclass="OPEN"></mo><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>n</mi><mo>,</mo><msup><mi>n</mi><mo>&#x2032;</mo></msup></mtd></mtr><mtr><mtd><mi>b</mi><mo>,</mo><msup><mi>b</mi><mo>&#x2032;</mo></msup></mtd></mtr></mtable></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><mi>c</mi><msub><mo>*</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>n</mi><mo>&#x2032;</mo></msup><mo>,</mo><msup><mi>b</mi><mo>&#x2032;</mo></msup></mrow></mrow></msub></mrow><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>,</mo><mi>b</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>n</mi><mo>&#x2032;</mo></msup><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>b</mi><mo>&#x2032;</mo></msup><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>b</mi><mo>,</mo><msup><mi>b</mi><mo>&#x2032;</mo></msup></mrow></mrow></msub></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>,</mo><msup><mi>n</mi><mo>&#x2032;</mo></msup></mrow></mrow></munder><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mi>c</mi><msub><mo>*</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>n</mi><mo>&#x2032;</mo></msup><mo>,</mo><mi>b</mi></mrow></mrow></msub></mrow><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>,</mo><mi>b</mi></mrow></mrow></msub></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo data-mjx-texclass="OPEN"></mo><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>,</mo><msup><mi>n</mi><mo>&#x2032;</mo></msup></mrow></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mtext>Matrix</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>hier findet sich Umgebung&#xA0;</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>wieder</mtext></mrow></mtd></mtr></mtable></mrow></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mi>n</mi><mo>&#x2032;</mo></msup><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Quantentheoretischer Zugang page

Identifiers

  • χ
  • Os
  • χ
  • n
  • n
  • b
  • b
  • c
  • n
  • b
  • cn,b
  • n
  • b
  • OS
  • b
  • δb,b
  • n
  • n
  • n
  • b
  • c
  • n
  • b
  • cn,b
  • ρn,n
  • n
  • OS
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results