Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2174.6 on revision:2174

* Page found: Transformationsverhalten der Ströme und Felder (eq math.2174.6)

(force rerendering)

Occurrences on the following pages:

Hash: fde297a154f1b44d3ad8baa6dbc8267e

TeX (original user input):

\begin{align}
& {{x}^{0}}\acute{\ }=\gamma \left( {{x}^{0}}-\beta {{x}^{1}} \right)\Leftrightarrow t\acute{\ }=\gamma \left( t-\frac{v}{{{c}^{2}}}{{x}^{1}} \right) \\
& {{x}^{1}}\acute{\ }=\gamma \left( {{x}^{1}}-\beta {{x}^{0}} \right)\Leftrightarrow {{x}^{1}}\acute{\ }=\gamma \left( {{x}^{1}}-vt \right) \\
& {{x}^{2}}\acute{\ }={{x}^{2}} \\
& {{x}^{3}}\acute{\ }={{x}^{3}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{x}^{0}}{\acute {\ }}=\gamma \left({{x}^{0}}-\beta {{x}^{1}}\right)\Leftrightarrow t{\acute {\ }}=\gamma \left(t-{\frac {v}{{c}^{2}}}{{x}^{1}}\right)\\&{{x}^{1}}{\acute {\ }}=\gamma \left({{x}^{1}}-\beta {{x}^{0}}\right)\Leftrightarrow {{x}^{1}}{\acute {\ }}=\gamma \left({{x}^{1}}-vt\right)\\&{{x}^{2}}{\acute {\ }}={{x}^{2}}\\&{{x}^{3}}{\acute {\ }}={{x}^{3}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.25 KB / 471 B) :

x0´=γ(x0βx1)t´=γ(tvc2x1)x1´=γ(x1βx0)x1´=γ(x1vt)x2´=x2x3´=x3
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo>&#x2212;</mo><mi>&#x03B2;</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D4;</mo><mi>t</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>&#x2212;</mo><mi>&#x03B2;</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D4;</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>&#x2212;</mo><mi>v</mi><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Transformationsverhalten der Ströme und Felder page

Identifiers

  • x
  • ´
  • γ
  • x
  • β
  • x
  • t
  • ´
  • γ
  • t
  • v
  • c
  • x
  • x
  • ´
  • γ
  • x
  • β
  • x
  • x
  • ´
  • γ
  • x
  • v
  • t
  • x
  • ´
  • x
  • x
  • ´
  • x

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results