Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2174.36 on revision:2174

* Page found: Transformationsverhalten der Ströme und Felder (eq math.2174.36)

(force rerendering)

Occurrences on the following pages:

Hash: d9857059bb5be59ab4ac363d0e4a3da0

TeX (original user input):

\begin{align}
& B{{\acute{\ }}^{1}}=\frac{1}{c}F{{\acute{\ }}^{32}}=\frac{1}{c}{{U}^{3}}_{\lambda }{{U}^{2}}_{\kappa }{{F}^{\lambda \kappa }}=\frac{1}{c}{{F}^{32}}={{B}^{1}} \\
& B{{\acute{\ }}^{2}}=\frac{1}{c}F{{\acute{\ }}^{13}}=\frac{1}{c}{{U}^{1}}_{\lambda }{{U}^{3}}_{\kappa }{{F}^{\lambda \kappa }}=\frac{1}{c}{{U}^{1}}_{\kappa }{{F}^{\kappa 3}}=-\frac{\beta \gamma }{c}{{F}^{03}}+\frac{\gamma }{c}{{F}^{13}}=\gamma \left( {{B}^{2}}+\frac{v}{{{c}^{2}}}{{E}^{3}} \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&B{{\acute {\ }}^{1}}={\frac {1}{c}}F{{\acute {\ }}^{32}}={\frac {1}{c}}{{U}^{3}}_{\lambda }{{U}^{2}}_{\kappa }{{F}^{\lambda \kappa }}={\frac {1}{c}}{{F}^{32}}={{B}^{1}}\\&B{{\acute {\ }}^{2}}={\frac {1}{c}}F{{\acute {\ }}^{13}}={\frac {1}{c}}{{U}^{1}}_{\lambda }{{U}^{3}}_{\kappa }{{F}^{\lambda \kappa }}={\frac {1}{c}}{{U}^{1}}_{\kappa }{{F}^{\kappa 3}}=-{\frac {\beta \gamma }{c}}{{F}^{03}}+{\frac {\gamma }{c}}{{F}^{13}}=\gamma \left({{B}^{2}}+{\frac {v}{{c}^{2}}}{{E}^{3}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.688 KB / 556 B) :

B´1=1cF´32=1cU3λU2κFλκ=1cF32=B1B´2=1cF´13=1cU1λU3κFλκ=1cU1κFκ3=βγcF03+γcF13=γ(B2+vc2E3)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>B</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mi>F</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mn>2</mn></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi><mi>&#x03BA;</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mn>2</mn></mrow></mrow></msup><mo>=</mo><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>B</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mi>F</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>3</mn></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi><mi>&#x03BA;</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi><mn>3</mn></mrow></mrow></msup><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03B3;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mn>3</mn></mrow></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>3</mn></mrow></mrow></msup><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Transformationsverhalten der Ströme und Felder page

Identifiers

  • B
  • ´
  • c
  • F
  • ´
  • c
  • Uλ
  • Uκ
  • F
  • λ
  • κ
  • c
  • F
  • B
  • B
  • ´
  • c
  • F
  • ´
  • c
  • Uλ
  • Uκ
  • F
  • λ
  • κ
  • c
  • Uκ
  • F
  • κ
  • β
  • γ
  • c
  • F
  • γ
  • c
  • F
  • γ
  • B
  • v
  • c
  • E

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results