Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2174.34 on revision:2174

* Page found: Transformationsverhalten der Ströme und Felder (eq math.2174.34)

(force rerendering)

Occurrences on the following pages:

Hash: 837ff81445011e80e01ad2beaa42199f

TeX (original user input):

\begin{align}
& E{{\acute{\ }}^{1}}=F{{\acute{\ }}^{10}}={{U}^{1}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}=-\beta \gamma {{U}^{0}}_{\kappa }{{F}^{0\kappa }}+\gamma {{U}^{0}}_{\kappa }{{F}^{1\kappa }}={{\left( \beta \gamma  \right)}^{2}}{{F}^{01}}+{{\gamma }^{2}}{{F}^{10}}= \\
& ={{\gamma }^{2}}\left( 1-{{\beta }^{2}} \right){{F}^{10}}={{E}^{1}} \\
& {{\gamma }^{2}}\left( 1-{{\beta }^{2}} \right)=1 \\
&  \\
& E{{\acute{\ }}^{2}}=F{{\acute{\ }}^{20}}={{U}^{2}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}={{U}^{0}}_{\kappa }{{F}^{2\kappa }}=\gamma {{F}^{20}}-\beta \gamma {{F}^{21}}=\gamma \left( {{E}^{2}}-v{{B}^{3}} \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&E{{\acute {\ }}^{1}}=F{{\acute {\ }}^{10}}={{U}^{1}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}=-\beta \gamma {{U}^{0}}_{\kappa }{{F}^{0\kappa }}+\gamma {{U}^{0}}_{\kappa }{{F}^{1\kappa }}={{\left(\beta \gamma \right)}^{2}}{{F}^{01}}+{{\gamma }^{2}}{{F}^{10}}=\\&={{\gamma }^{2}}\left(1-{{\beta }^{2}}\right){{F}^{10}}={{E}^{1}}\\&{{\gamma }^{2}}\left(1-{{\beta }^{2}}\right)=1\\&\\&E{{\acute {\ }}^{2}}=F{{\acute {\ }}^{20}}={{U}^{2}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}={{U}^{0}}_{\kappa }{{F}^{2\kappa }}=\gamma {{F}^{20}}-\beta \gamma {{F}^{21}}=\gamma \left({{E}^{2}}-v{{B}^{3}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.148 KB / 593 B) :

E´1=F´10=U1λU0κFλκ=βγU0κF0κ+γU0κF1κ=(βγ)2F01+γ2F10==γ2(1β2)F10=E1γ2(1β2)=1E´2=F´20=U2λU0κFλκ=U0κF2κ=γF20βγF21=γ(E2vB3)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>E</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>=</mo><mi>F</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi><mi>&#x03BA;</mi></mrow></mrow></msup><mo>=</mo><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi>&#x03B3;</mi><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mi>&#x03BA;</mi></mrow></mrow></msup><mo>+</mo><mi>&#x03B3;</mi><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mi>&#x03BA;</mi></mrow></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B2;</mi><mi>&#x03B3;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mn>1</mn></mrow></mrow></msup><mo>+</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup><mo>=</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup><mo>=</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mi>E</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>F</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>0</mn></mrow></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi><mi>&#x03BA;</mi></mrow></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03BA;</mi></mrow></msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03BA;</mi></mrow></mrow></msup><mo>=</mo><mi>&#x03B3;</mi><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>0</mn></mrow></mrow></msup><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi>&#x03B3;</mi><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>1</mn></mrow></mrow></msup><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><mi>v</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Transformationsverhalten der Ströme und Felder page

Identifiers

  • E
  • ´
  • F
  • ´
  • Uλ
  • Uκ
  • F
  • λ
  • κ
  • β
  • γ
  • Uκ
  • F
  • κ
  • γ
  • Uκ
  • F
  • κ
  • β
  • γ
  • F
  • γ
  • F
  • γ
  • β
  • F
  • E
  • γ
  • β
  • E
  • ´
  • F
  • ´
  • Uλ
  • Uκ
  • F
  • λ
  • κ
  • Uκ
  • F
  • κ
  • γ
  • F
  • β
  • γ
  • F
  • γ
  • E
  • v
  • B

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results