Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2174.25 on revision:2174

* Page found: Transformationsverhalten der Ströme und Felder (eq math.2174.25)

(force rerendering)

Occurrences on the following pages:

Hash: 4a19cd8ef3d320cc16c175cf17c8ca87

TeX (original user input):

\begin{align}
& \left\{ {{F}_{\mu \nu }} \right\}=\left\{ {{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\partial }_{\nu }}{{\Phi }_{\mu }} \right\}=\left( \begin{matrix}
0 & \frac{1}{c}{{E}_{x}} & \frac{1}{c}{{E}_{y}} & \frac{1}{c}{{E}_{z}}  \\
-\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
-\frac{1}{c}{{E}_{y}} & {{B}_{z}} & 0 & -{{B}_{x}}  \\
-\frac{1}{c}{{E}_{z}} & -{{B}_{y}} & {{B}_{x}} & 0  \\
\end{matrix} \right) \\
& {{F}^{\mu \nu }}=\left\{ {{\partial }^{\mu }}{{\Phi }^{\nu }}-{{\partial }^{\nu }}{{\Phi }^{\mu }} \right\}=\left( \begin{matrix}
0 & -\frac{1}{c}{{E}_{x}} & -\frac{1}{c}{{E}_{y}} & -\frac{1}{c}{{E}_{z}}  \\
\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
\frac{1}{c}{{E}_{y}} & {{B}_{z}} & 0 & -{{B}_{x}}  \\
\frac{1}{c}{{E}_{z}} & -{{B}_{y}} & {{B}_{x}} & 0  \\
\end{matrix} \right) \\
& \Leftrightarrow {{F}^{\mu \nu }}=\left\{ {{\partial }^{\mu }}{{\Phi }^{\nu }}-{{\partial }^{\nu }}{{\Phi }^{\mu }} \right\}=\left( \begin{matrix}
0 & -{{E}^{1}} & -{{E}^{2}} & -{{E}^{3}}  \\
{{E}^{1}} & 0 & -c{{B}^{3}} & c{{B}^{2}}  \\
{{E}^{2}} & c{{B}^{3}} & 0 & -c{{B}^{1}}  \\
{{E}^{3}} & -c{{B}^{2}} & c{{B}^{1}} & 0  \\
\end{matrix} \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&\left\{{{F}_{\mu \nu }}\right\}=\left\{{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\partial }_{\nu }}{{\Phi }_{\mu }}\right\}=\left({\begin{matrix}0&{\frac {1}{c}}{{E}_{x}}&{\frac {1}{c}}{{E}_{y}}&{\frac {1}{c}}{{E}_{z}}\\-{\frac {1}{c}}{{E}_{x}}&0&-{{B}_{z}}&{{B}_{y}}\\-{\frac {1}{c}}{{E}_{y}}&{{B}_{z}}&0&-{{B}_{x}}\\-{\frac {1}{c}}{{E}_{z}}&-{{B}_{y}}&{{B}_{x}}&0\\\end{matrix}}\right)\\&{{F}^{\mu \nu }}=\left\{{{\partial }^{\mu }}{{\Phi }^{\nu }}-{{\partial }^{\nu }}{{\Phi }^{\mu }}\right\}=\left({\begin{matrix}0&-{\frac {1}{c}}{{E}_{x}}&-{\frac {1}{c}}{{E}_{y}}&-{\frac {1}{c}}{{E}_{z}}\\{\frac {1}{c}}{{E}_{x}}&0&-{{B}_{z}}&{{B}_{y}}\\{\frac {1}{c}}{{E}_{y}}&{{B}_{z}}&0&-{{B}_{x}}\\{\frac {1}{c}}{{E}_{z}}&-{{B}_{y}}&{{B}_{x}}&0\\\end{matrix}}\right)\\&\Leftrightarrow {{F}^{\mu \nu }}=\left\{{{\partial }^{\mu }}{{\Phi }^{\nu }}-{{\partial }^{\nu }}{{\Phi }^{\mu }}\right\}=\left({\begin{matrix}0&-{{E}^{1}}&-{{E}^{2}}&-{{E}^{3}}\\{{E}^{1}}&0&-c{{B}^{3}}&c{{B}^{2}}\\{{E}^{2}}&c{{B}^{3}}&0&-c{{B}^{1}}\\{{E}^{3}}&-c{{B}^{2}}&c{{B}^{1}}&0\\\end{matrix}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (8.501 KB / 666 B) :

{Fμν}={μΦννΦμ}=(01cEx1cEy1cEz1cEx0BzBy1cEyBz0Bx1cEzByBx0)Fμν={μΦννΦμ}=(01cEx1cEy1cEz1cEx0BzBy1cEyBz0Bx1cEzByBx0)Fμν={μΦννΦμ}=(0E1E2E3E10cB3cB2E2cB30cB1E3cB2cB10)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mtd><mtd><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd><mtd><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mtd><mtd><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd><mtd><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mtd><mtd><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd><mtd><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mtd><mtd><mo>&#x2212;</mo><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd><mtd><msub><mi>B</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D4;</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd><mtd><mo>&#x2212;</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mo>&#x2212;</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mi>c</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd><mtd><mi>c</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mi>c</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mi>c</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mtd><mtd><mo>&#x2212;</mo><mi>c</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mi>c</mi><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Transformationsverhalten der Ströme und Felder page

Identifiers

  • Fμν
  • μ
  • Φν
  • ν
  • Φμ
  • c
  • Ex
  • c
  • Ey
  • c
  • Ez
  • c
  • Ex
  • Bz
  • By
  • c
  • Ey
  • Bz
  • Bx
  • c
  • Ez
  • By
  • Bx
  • F
  • μ
  • ν
  • μ
  • Φ
  • ν
  • ν
  • Φ
  • μ
  • c
  • Ex
  • c
  • Ey
  • c
  • Ez
  • c
  • Ex
  • Bz
  • By
  • c
  • Ey
  • Bz
  • Bx
  • c
  • Ez
  • By
  • Bx
  • F
  • μ
  • ν
  • μ
  • Φ
  • ν
  • ν
  • Φ
  • μ
  • E
  • E
  • E
  • E
  • c
  • B
  • c
  • B
  • E
  • c
  • B
  • c
  • B
  • E
  • c
  • B
  • c
  • B

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results