Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2174.11 on revision:2174

* Page found: Transformationsverhalten der Ströme und Felder (eq math.2174.11)

(force rerendering)

Occurrences on the following pages:

Hash: be66f460184d335ce20506850f038ed7

TeX (original user input):

\begin{align}
& \Delta \phi \left( \bar{r},t \right)-\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}\phi \left( \bar{r},t \right)=-\frac{\rho }{{{\varepsilon }_{0}}}=-{{\mu }_{0}}{{c}^{2}}\rho  \\
& \#\phi \left( \bar{r},t \right)=-\frac{\rho }{{{\varepsilon }_{0}}}\Leftrightarrow {{\partial }_{\mu }}{{\partial }^{\mu }}\phi =\frac{1}{{{\varepsilon }_{0}}c}{{j}^{0}} \\
\end{align}

TeX (checked):

{\begin{aligned}&\Delta \phi \left({\bar {r}},t\right)-{\frac {1}{{c}^{2}}}{\frac {{\partial }^{2}}{\partial {{t}^{2}}}}\phi \left({\bar {r}},t\right)=-{\frac {\rho }{{\varepsilon }_{0}}}=-{{\mu }_{0}}{{c}^{2}}\rho \\&\#\phi \left({\bar {r}},t\right)=-{\frac {\rho }{{\varepsilon }_{0}}}\Leftrightarrow {{\partial }_{\mu }}{{\partial }^{\mu }}\phi ={\frac {1}{{{\varepsilon }_{0}}c}}{{j}^{0}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.014 KB / 504 B) :

Δϕ(r¯,t)1c22t2ϕ(r¯,t)=ρε0=μ0c2ρ#ϕ(r¯,t)=ρε0μμϕ=1ε0cj0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x0394;</mi><mi>&#x03D5;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi>&#x03D5;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03C1;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>#</mo><mi>&#x03D5;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mo>&#x21D4;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi>&#x03D5;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow></mfrac></mrow><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Transformationsverhalten der Ströme und Felder page

Identifiers

  • Δ
  • ϕ
  • r¯
  • t
  • c
  • t
  • ϕ
  • r¯
  • t
  • ρ
  • ε0
  • μ0
  • c
  • ρ
  • ϕ
  • r¯
  • t
  • ρ
  • ε0
  • μ
  • μ
  • ϕ
  • ε0
  • c
  • j

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results