Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2160.68 on revision:2160
* Page found: Wellenausbreitung in Materie (eq math.2160.68)
(force rerendering)Occurrences on the following pages:
Hash: 6066340b8e1c7ac73012edd400b828be
TeX (original user input):
\begin{align}
& \hat{\chi }\left( \omega \right)=\frac{1}{2\pi i}\begin{matrix}
\lim \\
\sigma ->0+ \\
\end{matrix}\int_{-\infty }^{\infty }{{}}d\omega \acute{\ }\frac{1}{\omega \acute{\ }-\omega -i\sigma }\hat{\chi }\left( \omega \acute{\ } \right) \\
& =\frac{1}{2\pi i}P\int_{-\infty }^{\infty }{{}}d\omega \acute{\ }\frac{1}{\omega \acute{\ }-\omega }\hat{\chi }\left( \omega \acute{\ } \right)+\frac{1}{2}\hat{\chi }\left( \omega \right) \\
& \Rightarrow \hat{\chi }\left( \omega \right)=\frac{1}{\pi i}P\int_{-\infty }^{\infty }{{}}d\omega \acute{\ }\frac{1}{\omega \acute{\ }-\omega }\hat{\chi }\left( \omega \acute{\ } \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&{\hat {\chi }}\left(\omega \right)={\frac {1}{2\pi i}}{\begin{matrix}\lim \\\sigma ->0+\\\end{matrix}}\int _{-\infty }^{\infty }{}d\omega {\acute {\ }}{\frac {1}{\omega {\acute {\ }}-\omega -i\sigma }}{\hat {\chi }}\left(\omega {\acute {\ }}\right)\\&={\frac {1}{2\pi i}}P\int _{-\infty }^{\infty }{}d\omega {\acute {\ }}{\frac {1}{\omega {\acute {\ }}-\omega }}{\hat {\chi }}\left(\omega {\acute {\ }}\right)+{\frac {1}{2}}{\hat {\chi }}\left(\omega \right)\\&\Rightarrow {\hat {\chi }}\left(\omega \right)={\frac {1}{\pi i}}P\int _{-\infty }^{\infty }{}d\omega {\acute {\ }}{\frac {1}{\omega {\acute {\ }}-\omega }}{\hat {\chi }}\left(\omega {\acute {\ }}\right)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (6.02 KB / 600 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>χ</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>π</mi><mi>i</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>σ</mi><mo>−</mo><mo>></mo><mn>0</mn><mo>+</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi mathvariant="normal">∞</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>−</mo><mi>ω</mi><mo>−</mo><mi>i</mi><mi>σ</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>χ</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>π</mi><mi>i</mi></mrow></mrow></mfrac></mrow><mi>P</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi mathvariant="normal">∞</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>−</mo><mi>ω</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>χ</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>χ</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>χ</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>π</mi><mi>i</mi></mrow></mrow></mfrac></mrow><mi>P</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi mathvariant="normal">∞</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><mi>d</mi><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>−</mo><mi>ω</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>χ</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Wellenausbreitung in Materie page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results