Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2156.34 on revision:2156

* Page found: Mikroskopisches Modell der Polarisierbarkeit (eq math.2156.34)

(force rerendering)

Occurrences on the following pages:

Hash: 47a7c13985c64ad02e9143fdc673efc5

TeX (original user input):

\begin{align}
& \bar{P}={{\varepsilon }_{0}}n\alpha {{{\bar{E}}}_{a}}={{\varepsilon }_{0}}n\alpha \left( \bar{E}+\frac{1}{3{{\varepsilon }_{0}}}\bar{P} \right) \\
& \bar{P}={{\varepsilon }_{0}}{{\chi }_{e}}\bar{E} \\
& \Rightarrow {{\chi }_{e}}=\frac{n\alpha }{1-\frac{1}{3}n\alpha } \\
& n\alpha =\frac{{{\chi }_{e}}}{1+\frac{1}{3}{{\chi }_{e}}}=\frac{\varepsilon -1}{1+\frac{\varepsilon -1}{3}}=3\frac{\varepsilon -1}{\varepsilon +2} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\bar {P}}={{\varepsilon }_{0}}n\alpha {{\bar {E}}_{a}}={{\varepsilon }_{0}}n\alpha \left({\bar {E}}+{\frac {1}{3{{\varepsilon }_{0}}}}{\bar {P}}\right)\\&{\bar {P}}={{\varepsilon }_{0}}{{\chi }_{e}}{\bar {E}}\\&\Rightarrow {{\chi }_{e}}={\frac {n\alpha }{1-{\frac {1}{3}}n\alpha }}\\&n\alpha ={\frac {{\chi }_{e}}{1+{\frac {1}{3}}{{\chi }_{e}}}}={\frac {\varepsilon -1}{1+{\frac {\varepsilon -1}{3}}}}=3{\frac {\varepsilon -1}{\varepsilon +2}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.8 KB / 511 B) :

P¯=ε0nαE¯a=ε0nα(E¯+13ε0P¯)P¯=ε0χeE¯χe=nα113nαnα=χe1+13χe=ε11+ε13=3ε1ε+2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>n</mi><mi>&#x03B1;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>n</mi><mi>&#x03B1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>&#x03B1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>n</mi><mi>&#x03B1;</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>n</mi><mi>&#x03B1;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><mn>3</mn><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mo>+</mo><mn>2</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Mikroskopisches Modell der Polarisierbarkeit page

Identifiers

  • P¯
  • ε0
  • n
  • α
  • E¯a
  • ε0
  • n
  • α
  • E¯
  • ε0
  • P¯
  • P¯
  • ε0
  • χe
  • E¯
  • χe
  • n
  • α
  • n
  • α
  • n
  • α
  • χe
  • χe
  • ε
  • ε
  • ε
  • ε

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results