Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2156.29 on revision:2156

* Page found: Mikroskopisches Modell der Polarisierbarkeit (eq math.2156.29)

(force rerendering)

Occurrences on the following pages:

Hash: 0dcc6d45700cc580ab364a7e98642898

TeX (original user input):

\begin{align}
& \bar{P}=\frac{{\bar{p}}}{\frac{4}{3}{{a}^{3}}\pi } \\
& \Rightarrow {{\Phi }_{0}}\left( {\bar{r}} \right)\approx {{{\bar{r}}}_{0}}{{{\bar{E}}}_{0}}=\frac{Q}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
\frac{{{{\bar{r}}}_{0}}\bar{r}}{{{a}^{3}}}r\le a  \\
\frac{{{{\bar{r}}}_{0}}\bar{r}}{{{r}^{3}}}r\ge a  \\
\end{matrix} \right.=\frac{1}{{{\varepsilon }_{0}}}\left\{ \begin{matrix}
\frac{\bar{P}\bar{r}}{3}r\le a  \\
\bar{P}\bar{r}\frac{{{a}^{3}}}{{{r}^{3}}}r\ge a  \\
\end{matrix} \right. \\
\end{align}

TeX (checked):

{\begin{aligned}&{\bar {P}}={\frac {\bar {p}}{{\frac {4}{3}}{{a}^{3}}\pi }}\\&\Rightarrow {{\Phi }_{0}}\left({\bar {r}}\right)\approx {{\bar {r}}_{0}}{{\bar {E}}_{0}}={\frac {Q}{4\pi {{\varepsilon }_{0}}}}\left\{{\begin{matrix}{\frac {{{\bar {r}}_{0}}{\bar {r}}}{{a}^{3}}}r\leq a\\{\frac {{{\bar {r}}_{0}}{\bar {r}}}{{r}^{3}}}r\geq a\\\end{matrix}}\right.={\frac {1}{{\varepsilon }_{0}}}\left\{{\begin{matrix}{\frac {{\bar {P}}{\bar {r}}}{3}}r\leq a\\{\bar {P}}{\bar {r}}{\frac {{a}^{3}}{{r}^{3}}}r\geq a\\\end{matrix}}\right.\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.878 KB / 593 B) :

P¯=p¯43a3πΦ0(r¯)r¯0E¯0=Q4πε0{r¯0r¯a3rar¯0r¯r3ra=1ε0{P¯r¯3raP¯r¯a3r3ra
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2248;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>Q</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mi>r</mi><mo>&#x2264;</mo><mi>a</mi></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mi>r</mi><mo>&#x2265;</mo><mi>a</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>r</mi><mo>&#x2264;</mo><mi>a</mi></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mi>r</mi><mo>&#x2265;</mo><mi>a</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Mikroskopisches Modell der Polarisierbarkeit page

Identifiers

  • P¯
  • p¯
  • a
  • π
  • Φ0
  • r¯
  • r¯0
  • E¯0
  • Q
  • π
  • ε0
  • r¯0
  • r¯
  • a
  • r
  • a
  • r¯0
  • r¯
  • r
  • r
  • a
  • ε0
  • P¯
  • r¯
  • r
  • a
  • P¯
  • r¯
  • a
  • r
  • r
  • a

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results