Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2156.28 on revision:2156

* Page found: Mikroskopisches Modell der Polarisierbarkeit (eq math.2156.28)

(force rerendering)

Occurrences on the following pages:

Hash: 1b26d5682289eafdbfadd81477baf121

TeX (original user input):

\begin{align}
& {{\Phi }_{0}}\left( {\bar{r}} \right)={{\Phi }_{0}}\left( \bar{r}-\frac{1}{2}{{{\bar{r}}}_{0}} \right)-{{\Phi }_{0}}\left( \bar{r}+\frac{1}{2}{{{\bar{r}}}_{0}} \right) \\
& \approx -{{{\bar{r}}}_{0}}\nabla {{\Phi }_{0}}\left( {\bar{r}} \right) \\
& \nabla {{\Phi }_{0}}\left( {\bar{r}} \right)=-{{{\bar{E}}}_{0}} \\
& \Rightarrow {{\Phi }_{0}}\left( {\bar{r}} \right)\approx {{{\bar{r}}}_{0}}{{{\bar{E}}}_{0}}=\frac{Q}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
\frac{{{{\bar{r}}}_{0}}\bar{r}}{{{a}^{3}}}r\le a  \\
\frac{{{{\bar{r}}}_{0}}\bar{r}}{{{r}^{3}}}r\ge a  \\
\end{matrix} \right.=\frac{1}{4\pi {{\varepsilon }_{0}}}\left\{ \begin{matrix}
\frac{\bar{p}\bar{r}}{{{a}^{3}}}r\le a  \\
\frac{\bar{p}\bar{r}}{{{r}^{3}}}r\ge a  \\
\end{matrix} \right. \\
& \bar{p}:=Q{{{\bar{r}}}_{0}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\Phi }_{0}}\left({\bar {r}}\right)={{\Phi }_{0}}\left({\bar {r}}-{\frac {1}{2}}{{\bar {r}}_{0}}\right)-{{\Phi }_{0}}\left({\bar {r}}+{\frac {1}{2}}{{\bar {r}}_{0}}\right)\\&\approx -{{\bar {r}}_{0}}\nabla {{\Phi }_{0}}\left({\bar {r}}\right)\\&\nabla {{\Phi }_{0}}\left({\bar {r}}\right)=-{{\bar {E}}_{0}}\\&\Rightarrow {{\Phi }_{0}}\left({\bar {r}}\right)\approx {{\bar {r}}_{0}}{{\bar {E}}_{0}}={\frac {Q}{4\pi {{\varepsilon }_{0}}}}\left\{{\begin{matrix}{\frac {{{\bar {r}}_{0}}{\bar {r}}}{{a}^{3}}}r\leq a\\{\frac {{{\bar {r}}_{0}}{\bar {r}}}{{r}^{3}}}r\geq a\\\end{matrix}}\right.={\frac {1}{4\pi {{\varepsilon }_{0}}}}\left\{{\begin{matrix}{\frac {{\bar {p}}{\bar {r}}}{{a}^{3}}}r\leq a\\{\frac {{\bar {p}}{\bar {r}}}{{r}^{3}}}r\geq a\\\end{matrix}}\right.\\&{\bar {p}}:=Q{{\bar {r}}_{0}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (7.443 KB / 652 B) :

Φ0(r¯)=Φ0(r¯12r¯0)Φ0(r¯+12r¯0)r¯0Φ0(r¯)Φ0(r¯)=E¯0Φ0(r¯)r¯0E¯0=Q4πε0{r¯0r¯a3rar¯0r¯r3ra=14πε0{p¯r¯a3rap¯r¯r3rap¯:=Qr¯0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2248;</mo><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi mathvariant="normal">&#x2207;</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2248;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>Q</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mi>r</mi><mo>&#x2264;</mo><mi>a</mi></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mi>r</mi><mo>&#x2265;</mo><mi>a</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mi>r</mi><mo>&#x2264;</mo><mi>a</mi></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mi>r</mi><mo>&#x2265;</mo><mi>a</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><mi>Q</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Mikroskopisches Modell der Polarisierbarkeit page

Identifiers

  • Φ0
  • r¯
  • Φ0
  • r¯
  • r¯0
  • Φ0
  • r¯
  • r¯0
  • r¯0
  • Φ0
  • r¯
  • Φ0
  • r¯
  • E¯0
  • Φ0
  • r¯
  • r¯0
  • E¯0
  • Q
  • π
  • ε0
  • r¯0
  • r¯
  • a
  • r
  • a
  • r¯0
  • r¯
  • r
  • r
  • a
  • π
  • ε0
  • p¯
  • r¯
  • a
  • r
  • a
  • p¯
  • r¯
  • r
  • r
  • a
  • p¯
  • Q
  • r¯0

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results