Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2156.18 on revision:2156

* Page found: Mikroskopisches Modell der Polarisierbarkeit (eq math.2156.18)

(force rerendering)

Occurrences on the following pages:

Hash: f449329fa342d974307cd939af21e7a4

TeX (original user input):

\begin{align}
&  \ddot{\bar{r}}={{{\ddot{\bar{r}}}}_{k}}-{{{\ddot{\bar{r}}}}_{e}}=-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}{{m}_{K}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+\frac{Ze}{{{m}_{K}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{\acute{\ }k}},t \right)-\frac{Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}{{m}_{e}}}\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+\frac{e}{{{m}_{e}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right) \\
& =-\frac{{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}\left( \frac{1}{{{m}_{K}}}+\frac{1}{Z{{m}_{e}}} \right)\left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)+Ze\left( \frac{1}{{{m}_{K}}}+\frac{1}{Z{{m}_{e}}} \right){{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right) \\
& \left( \frac{1}{{{m}_{K}}}+\frac{1}{Z{{m}_{e}}} \right)\approx \frac{1}{Z{{m}_{e}}} \\
& \left( {{{\bar{r}}}_{k}}-{{{\bar{r}}}_{e}} \right)=\bar{r} \\
& \Rightarrow \ddot{\bar{r}}=-\frac{Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{m}_{e}}{{R}^{3}}}\bar{r}+\frac{e}{{{m}_{e}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right) \\
& \frac{Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{m}_{e}}{{R}^{3}}}:={{\omega }_{0}}^{2} \\
& \Rightarrow \ddot{\bar{r}}+{{\omega }_{0}}^{2}\bar{r}=\frac{e}{{{m}_{e}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&{\ddot {\bar {r}}}={{\ddot {\bar {r}}}_{k}}-{{\ddot {\bar {r}}}_{e}}=-{\frac {{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}{{m}_{K}}}}\left({{\bar {r}}_{k}}-{{\bar {r}}_{e}}\right)+{\frac {Ze}{{m}_{K}}}{{\bar {E}}_{a}}\left({{\bar {r}}_{{\acute {\ }}k}},t\right)-{\frac {Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}{{m}_{e}}}}\left({{\bar {r}}_{k}}-{{\bar {r}}_{e}}\right)+{\frac {e}{{m}_{e}}}{{\bar {E}}_{a}}\left({{\bar {r}}_{k}},t\right)\\&=-{\frac {{{Z}^{2}}{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{R}^{3}}}}\left({\frac {1}{{m}_{K}}}+{\frac {1}{Z{{m}_{e}}}}\right)\left({{\bar {r}}_{k}}-{{\bar {r}}_{e}}\right)+Ze\left({\frac {1}{{m}_{K}}}+{\frac {1}{Z{{m}_{e}}}}\right){{\bar {E}}_{a}}\left({{\bar {r}}_{k}},t\right)\\&\left({\frac {1}{{m}_{K}}}+{\frac {1}{Z{{m}_{e}}}}\right)\approx {\frac {1}{Z{{m}_{e}}}}\\&\left({{\bar {r}}_{k}}-{{\bar {r}}_{e}}\right)={\bar {r}}\\&\Rightarrow {\ddot {\bar {r}}}=-{\frac {Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{m}_{e}}{{R}^{3}}}}{\bar {r}}+{\frac {e}{{m}_{e}}}{{\bar {E}}_{a}}\left({{\bar {r}}_{k}},t\right)\\&{\frac {Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{m}_{e}}{{R}^{3}}}}:={{\omega }_{0}}^{2}\\&\Rightarrow {\ddot {\bar {r}}}+{{\omega }_{0}}^{2}{\bar {r}}={\frac {e}{{m}_{e}}}{{\bar {E}}_{a}}\left({{\bar {r}}_{k}},t\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (12.356 KB / 753 B) :

r¯¨=r¯¨kr¯¨e=Z2e24πε0R3mK(r¯kr¯e)+ZemKE¯a(r¯´k,t)Ze24πε0R3me(r¯kr¯e)+emeE¯a(r¯k,t)=Z2e24πε0R3(1mK+1Zme)(r¯kr¯e)+Ze(1mK+1Zme)E¯a(r¯k,t)(1mK+1Zme)1Zme(r¯kr¯e)=r¯r¯¨=Ze24πε0meR3r¯+emeE¯a(r¯k,t)Ze24πε0meR3:=ω02r¯¨+ω02r¯=emeE¯a(r¯k,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>Z</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>K</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><mi>e</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>K</mi></mrow></msub></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>k</mi></mrow></mrow></msub><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>Z</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>K</mi></mrow></msub></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>Z</mi><mi>e</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>K</mi></mrow></msub></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>K</mi></mrow></msub></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi>:</mi><mo>=</mo><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mo>+</mo><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Mikroskopisches Modell der Polarisierbarkeit page

Identifiers

  • r¯¨
  • r¯¨k
  • r¯¨e
  • Z
  • e
  • π
  • ε0
  • R
  • mK
  • r¯k
  • r¯e
  • Z
  • e
  • mK
  • E¯a
  • r¯
  • ´
  • k
  • t
  • Z
  • e
  • π
  • ε0
  • R
  • me
  • r¯k
  • r¯e
  • e
  • me
  • E¯a
  • r¯k
  • t
  • Z
  • e
  • π
  • ε0
  • R
  • mK
  • Z
  • me
  • r¯k
  • r¯e
  • Z
  • e
  • mK
  • Z
  • me
  • E¯a
  • r¯k
  • t
  • mK
  • Z
  • me
  • Z
  • me
  • r¯k
  • r¯e
  • r¯
  • r¯¨
  • Z
  • e
  • π
  • ε0
  • me
  • R
  • r¯
  • e
  • me
  • E¯a
  • r¯k
  • t
  • Z
  • e
  • π
  • ε0
  • me
  • R
  • ω0
  • r¯¨
  • ω0
  • r¯
  • e
  • me
  • E¯a
  • r¯k
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results